Applied RF Engineering III - Wireless System Fundamentals
Course 272
Part of our Applied RF Engineering Certification
Feb 17-Jul 18, 2025 - RF Certifications Online, Besser Associates Online Academy /
Rex Frobenius
$995
Register now! or Save a seat
Apr 21-Sep 19, 2025 - RF Certifications Online, Besser Associates Online Academy /
Rex Frobenius
$995
Register now! or Save a seat
Jul 21-Dec 12, 2025 - RF Certifications Online, Besser Associates Online Academy /
Rex Frobenius
$995
Register now! or Save a seat
Sep 22-Feb 13, 2026 - RF Certifications Online, Besser Associates Online Academy /
Rex Frobenius
$995
Register now! or Save a seat
Summary
TRAINING HOURS: This course is equivalent to 24 hours of classroom training.
This next step in the Applied RF Engineering series looks at design parameters at the system-block level. We introduce the key system design parameters and show how individual component parameters affect those top-level specifications. Physical limitations and performance tradeoffs are defined and examined. Once these limitations are understood, the common receiver and transmitter architectures can be described intuitively as solutions to achieve the best performance under different scenarios. We will also introduce the fundamental digital modulation formats and show their impact on system requirements.
Our discussion starts with the concept of noise, which is innately intuitive to us as a limiting factor in the ability to discern weak signals in a radio environment. Less obvious is the behavior of strong signals and the intermodulation and other distortion products that they produce. Our ability to produce signals at desired frequencies, shift signal frequency and filter unwanted signals are important tools that are described next. From this information we can characterize the performance of receivers with respect to minimum detectable signal, sensitivity, selectivity, and spur-free dynamic range, among other parameters. All of these factors are combined to enable us to perform a link budget for a communications system.
Alternative On-Demand schedule dates are available. Please contact us at info@besserassociates.com for details.
Learning objectives
Upon completing the course you will be able to:
- Determine the noise floor and SFDR of a receiver
- Estimate whether a filter will be able to sufficiently block an unwanted signal
- Select a PLO based on phase noise requirements for a system
- Understand how intermediate frequencies are selected for a given system
- Weigh the tradeoffs of various transceiver architectures
Target Audience
This course is intended for students with an engineering background or equivalent practical experience. The course format consists of recorded lectures that are typically followed by online workbooks containing supplemental information and exercises. Custom calculators and simple simulations are often included to promote exploration of the topics. "Chalk Talk" videos in the format of the instructor writing on a virtual whiteboard are also utilized to derive some equations or work through example problems. Together these features comprise the "RF Mentor Enhanced e-Learning Format,"™ originally developed for our top-selling "RF Technology Certification"™ program.