

2015 COURSE OUTLINES & INSTRUCTOR BIOS

San Jose • Your Facility • Your Desktop www.besserassociates.com

Contents

Advanced Radio System Architectures	4
Antennas & Propagation for Wireless Communications	5
Applied Design of RF/Wireless Products and Systems	7
Applied Embedded Control Systems	9
Applied RF II: Advanced Wireless and Microwave Techniques	10
Applied RF Techniques I	12
Applied RF Techniques II	14
Behavioural Modeling & Digital Pre-Distortion of RF Power Amplifiers	16
BER, EVM, & Digital Modulation Testing for Test & Product Engineers	17
Cavity Filters and Multiplexers for Wireless Applications	19
CMOS RF Circuit Design	21
Cognitive Radios, Networks, and Systems for Digital Communications	22
Design of CMOS Power Amplifiers	23
Digital Mobile and Wireless Communications- The Radio Interface	
for 4G, IMT-Advanced, 5G, Broadband Wireless Access	24
Digital Predistortion Techniques For RF Power Amplifier Systems	26
Digital Signal Processing and Wireless Communications	27
DSP - Understanding Digital Signal Processing	29
EMC/Shielding/Grounding Techniques for Chip & PCB Layout	30
EMI/EMC and Signal Integrity Boot Camp	31
EMI/EMC Design and Troubleshooting	34
Filters and Multiplexers for Military Systems	36
Frequency Synthesis and Phase-Locked Loop Design	38
Fundamentals of LTE - OFDM, WCDMA	39
GaN Power Amplifiers	41
Hardware DSP: A quide to building DSP Circuits in FPGAs	42
How to Speak RF (and Wireless)	43
Introduction to Data Converters: ADC & DAC	44
Introduction to Impedance Matching	45
Introduction to Radar	46
Introduction to Wireless Communication Systems	47
LTE & LTE-Advanced: A Comprehensive Overview	49
LTE & LTE-Advanced: An Overview	51
Modern Radar Systems	53
Monolithic Microwave Integrated Circuit (MMIC) Design	55
Network Security: Penetration Attack Testing	56
PCB Filters and Multiplexers Using Standard SMT Components	57
Phase Noise and Jitter	58
Phase-Locked Loop and Frequency Synthesis Design	60
Power Amplifier ABC's	62
Power Regulation & Conversion Design for VLSI and SoC Systems	63
Practical Digital Wireless Signals	64
Practical Digital Wireless Signals - Measurements and Characteristics	66
Production Testing of RF and SOC Devices for Wireless Communications	68
Radio System Design - Theory and Practice	70
RF & Wireless Made Simple Online Course	72
RF and High Speed PCB and EMI Design Fundamentals	73
RF and Microwave Transistors/Semiconductor Materials	74
RF and Wireless Made Simple	75
RF and Wireless Made Simple II	76
RF and Wireless Transceiver Design & Evaluation Techniques	77
RF Design: Applied Techniques	79
RF Design: Core Concepts	81
RF Fundamentals, Modeling and De-Embedding Techniques	82
RF Measurements: Principles & Demonstration	83
RF Power Amplifier Techniques - including GaN plus Si & GaAs semiconductors	85
RF Productivity: Core Analytical Tools	87
RF Productivity: Signals and Propagation	88

RF Productivity: Test Equipment	89
RF Productivity: Wireless/Radio System Components	90
RF Technology Certification	91
RF Wireless System Design Fundamentals	93
Semiconductor Device Physics for RF Design	. 94
Signal Integrity and EMI Fundamentals	95
The Radio Modem: RF Transceiver From Antenna to Bits and Back	97
Transceiver and Systems Design for Digital Communications	99
Wireless Circuits, Systems and Test Fundamentals	.102
Wireless LANs	.103
Wireless/Computer/Telecom Network Security	.104
Christopher J. Baker	.106
Les Besser	.106
Steven Best	.107
Joe Boccuzzi	.107
Scott Bullock	.108
Steve Cripps	.109
Ali Darwish	.109
Eric Drucker	.110
Oren Eliezer	.110
Ayman Fayed	.111
Rick Fornes	.111
Rex Frobenius	.112
Bob Froelich	.112
Sean Gallagher	.113
Rowan Gilmore	.113
Irving Kalet	.114
Waleed Khalil	.114
Lutz Konstroffer	.115
Jeff Lange	.115
Richard Lyons	.116
Earl McCune Jr	.116
Arturo Mediano	.117
Steve Moore	.117
Douglas H. Morais	.118
Ed Niehenke	.118
Istvan Novak	.119
Allen Podell	.119
Chris Potter	.120
Richard Ranson	.120
Tamer Refaei	.121
Keith Schaub	.122
Bernard Sklar	.122
Malcolm Smith	.123
Dan Swanson	.123
Tim Wescott	.124
John Wood	.124
Amir Zaghloul	.125
-	-

Advanced Radio System Architectures

Course 214

•Oct 12-Oct 14, 2015 - San Jose, CA / Richard Ranson

Summary

The ideas associated with sampling and digital signals that revolutionised modulation systems and are now revolutionising radio system design. This course continues the theme of block diagram rather than circuit diagram design, presenting an up to date view on concepts for advanced radio systems that incorporate digital signal processing at RF frequencies and the concepts of software defined radio. It is a practical approach for technical professionals to understand the latest designs and architectures for radio systems that include DSP.

Learning Objectives

Upon completing the course the student will be able to:

•Understand important features of ADC/DAC with respect to sampling theory, filtering, Eb/No

perform cascade system analysis incorporating ADC functions
 select oscillators, mixers, and frequency synthesizers for specific applications

•understand PLL measurements of gain, phase margin, phase noise

•create accurate IQ modulators and demodulators

•weigh strengths and weaknesses of various system architec-

tures including SuperHet and ZIF designs

•plan and distribute frequency control and gain blocks including automatic control loops

•balance analog/digital and hardware/software distribution for a given system

Target Audience

This is an intermediate to advanced level course for system architects, design engineers and managers looking for up to date information on recent advances in the field of radio system design. The objective is to expand the range of radio design into the DSP era. Learning objectives include identifying the critical RF parameters in wireless transceiver technology, understanding the various trade offs in different architectures and understanding the balance of analogue to digital processing for cost effective design solutions. These concepts have a broad range of application from low cost terminal devices for mobile communications, multifunction radio systems, remote sensing, advanced concept radios for radar/surveillance and enabling wireless connectivity in a variety of product and services.

The course is suitable for those working in radio as well as in the mobile phone industry, handset or base station, satellite communications, radar and EW / ECM.

Outline

Day One		System Level Performance	
Sampling, DSP and Software Defined Radio		 Mixers, multipliers, PLL 	 PLL gain, phase margin,
• Important features of ADC/ DAC	Eb/NoDigital processing	 contributions to spurious and noise 	phase noise • IQ modulator/demodulators
Sampling theoryBaseband filtering	 Digital down conversion Software defined radio 	 Measurement techniques Day Three 	for accurate signals
System Level Parameters		Transceiver Architecture Incorporat	ing DSP
 Signal and noise levels Intermodulation Dynamic range Day Two Local Oscillators 	• Standard cascade analysis extended to include ADC	 Examples of real system architectures strengths and weaknesses Superhet radio Single/multiple IF designs 	 Near-zero IF Frequency and Gain planning Automatic gain control loops
 Stability Tuning range Mixers 	• Linearity	• Direct conversion/zero IF (ZIF) DSP Considerations	• Automatic frequency control loops
 Image band Choice of IF Frequency synthesizers 	Spurious signal responsesExamples	 Relevance to radio system architecture Balance of analog to digital 	functional blocks Balance of hardware to software
• Direct	 Examples showing options 	Bonus Materials on Included CDRO	M
IndirectDigital	and designs	 Custom applications Spreadsheets Simulation files 	Selected application notesWeb links

Antennas & Propagation for Wireless Communications

Course 037

•Oct 12-Oct 15, 2015 - San Jose, CA / Steven Best

Summary

This four-day course provides participants with comprehensive coverage of a wide variety of antenna and propagation topics. The course provides an understanding of basic antenna property definitions, antenna design fundamentals and considerations, numerous antenna types and RF propagation fundamentals. The course also provides an overview of how antenna properties and propagation characteristics affect communication system performance. Topics covered include fundamental antenna performance properties, antenna specifications and data sheets, basic antenna types, elementary antennas, electrically small antennas, wireless device antennas, medical device antennas, low profile antennas, aperture and reflector antennas, circular polarized antennas, antenna arrays, propagation channel characteristics, antenna diversity and MIMO, and an overview of different antennas used in today's wireless communication systems and markets.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the concepts associated with antenna performance, operation and classification.

• Understand, evaluate and define antenna performance speci-

Outline

Day One

Basic RF Concepts • Review of fundamental RF mance requirements of a wireless communication system Concepts • Basic design and perfor-**Basic Antenna Concepts** • Definitions of basic antenna width, directivity, gain, radiation patterns, polarizaproperties - impedance, VSWR, bandtion, etc. Types of Antennas • Resonant antennas Phased arrays • Traveling wave antennas • Electrically small antennas • Frequency Independent • Circularly polarized antenantennas nas • Aperture antennas **Classification of Antenna Types** • By frequency • By directivity • By size **Fundamental Antenna Elements** • The folded dipole • The monopole • The dipole • The slot • The loop **Microstrip Antennas** • Element types Microstrip element design

fications.

- •Describe and understand a broad spectrum of antenna types. •Illustrate antenna operating principles with a factual knowl-
- edge of antenna theory.
- •Understand the basic performance trade-offs associated with antenna design.
- •Understand how to design basic antenna elements.

•Understand basic principles associated with the implementation of antenna arrays.

•Understand and describe how antenna performance and the RF propagation environment impact wireless communication system performance.

•Understand the basic types of antennas that are used in today's wireless communications markets.

Target Audience

Anyone working within the field of general RF systems, wireless, cellular and microwave systems will benefit from this comprehensive coverage of antenna properties and design. The course is well suited for design engineers and program mangers who require an understanding of antenna principles and design concepts. Basic mathematical and computing skills are a prerequisite for this course. An electrical engineering background or equivalent practical experience is recommended but not required.

 Design trade-offs Designing and 802.11 mi- Baluns 	crostrip patch
Ground Plane Considerations	
 Vertically polarized anten- nas 	• The impact of the surround- ing environment on antenna
 horizontally polarized an- 	performance
tennas	-
Day Two	
Circularly Polarized Antennas	
 Achieving circular polariza- tion The helix antenna Aperture Antennas 	 The crossed dipole antenna The microstrip patch The quadrifilar helix
 Aperture design concepts The horn antenna Impedance Matching 	 The reflector antenna The corner reflector
• Impedance matching net- Broadband Antennas	works
 Monopole configurations Feed considerations Dipole configurations Frequency Independent Antennas 	• Bandwidth improvement techniques
• The log-periodic antenna	• The spiral antenna

Electrically Small Antennas

• Impedance, bandwidth and

- quality factor of antennas
- Defining electrically small
- Fundamental performance limitations

Day Three

Antenna Arrays	
 Fundamental array theory Types of antenna arrays Feed network design considerations Beam steering and shaping Friis and Link Budget 	concepts • Performance trade-offs • Microstrip patch arrays • Dipole element arrays
 The communication link Understanding and calculating path loss Receive Properties of Antenna 	Receiver Sensitivity and antenna noise figureLink budget calculations
• How does an antenna cap- ture power Fractal Antennas	 Aperture area and efficiency Coupling between antennas
 Fractal antenna types Performance properties of RFID Antennas 	fractal antennas
 RFID system basics Performance properties of Ultra Wideband (UWB) Antennas 	RFID antennas
• Time domain considerations in antenna design Low Profile Antennas	• Antenna performance re- quirements in UWB systems
• The inverted L and inverted F antennas Device Integrated Antennas	• The planar inverted F an- tenna (PIFA)
• Antennas commonly used in Day Four Propagation Channel Consideration	wireless device applications s
 RF path loss Reflection, multipath and fading Noise and interference 	 Polarization distortion Diversity implementation MIMO
 Wireless base station antennas Wireless handset and portable device antennas GPS antennas 	 HF, UHF and VHF communi- cation antennas Earth station and satellite communication antennas

• Software packages • The small dipole

• The small loop

small antennas

• Design and Optimization of

• Comparison with measure-

Antenna Design and Simulation Examples Using Commercial Antenna **Design Software**

ments

Numerical Modeling of Antennas

Applied Design of RF/Wireless Products and Systems

Course 161

Summary

This 3-day intermediate-level course focuses on the practical design and development of modern RF and wireless communications circuits and systems using common digital modulation standards. In today's highly competitive global wireless industry, the design-to-production cycle is of crucial importance. However, developing modern wireless products, such as Wi-Fi, GPS, Bluetooth, Zigbee, and 3G/4G devices, presents many challenges. Advanced skills and knowledge are required, not only to architect these systems and devise suitable circuit topologies, but also to solve the challenging integration and manufacturability issues associated with high-volume products. This course teaches the practical aspects of developing robust RF and wireless designs suitable for high-volume production.

Learning Objectives

Upon completing the course the student will be able to:

•Describe common digital modulation standards and modulation formats

Outline

Day One

Digital Modulation Fundamentals

•	System link block diagram
	– modulation, transmis-
	sion, channel, reception,
	demodulation

- Why Digital?
 Resistance to fading, voice vs. packet data, capacity
- IQ modulation representation

– constellation, eye diagram display formats concept of ISI
Channel characteristics, diversity, fading types, mitigation techniques, Spread

• BPSK, QPSK, MSK, properties

of gaussian and RRC filtering,

- spectrum, OFDM, equalisation and training
 TDMA, FDMA, CDMA defini-
- tions • TDD, FDD

ac, GPS, Bluetooth EDR

- Frequency planning, analysis of cascaded blocks,

• Transceiver architectural

• GSM example, Bluetooth example, 3GPP example. Super-

het, Zero IF, low IF, Analoque

examples

TDD and FDD considerations

gram display formats
Common Modulation Standards and Implications for RF Implementation
• Constant envelope modulation examples
- Bluetooth, GSM
CDMA2000, 802.11a/b/q/n/

- *Bluetooth, GSM*Non-constant Envelope
- Transceiver System Considerations
- Common RF System Components
- Amplifiers, mixers, filters, etc.
- Imperfections: Distortion
- and noise, spurious responsesTransceiver architectures
- and trade-offs

•Explain the key component-level specifications of each transceiver circuit block

•Explain the component and system-level measurements required to characterise digital modulation systems

•List the key features, strengths and weaknesses of common transceiver architectures

•Specify the key measurements for digital receivers and transmitters

•Identify the effects of PCB layout on system performance, and use best practices to minimise layout-related problems

•Mitigate against yield, tolerancing, self-EMC, conducted and radiated integration problems.

•Identify verification methods to validate a digital modulation system

Target Audience

The course is aimed at engineers, technicians and engineering managers working in the wireless communications industry. The audience typically includes RF engineers and technicians working in research and development, manufacturing test and production environments and systems engineers responsible for the architecture of RF communications systems. The course will also be of interest to managers who oversee these groups.

quadrature modulator, Digital loop

- IF, Up-mixing. Upconversion
- Day Two

RF Component-level Measurements	
 Linear measurements Power, S-Parameters (including Balanced devices), Group delay, Noise figure, Phase noise Nonlinear measurements Intermodulation, Load- pull, EVM, ACP, AM-AM and AM-PM calculated from IQ measurements Two-tone Intermodulation ACP Receiver Measurements 	 GSM and W-CDMA measurement examples Modulation Accuracy - EVM Rms, peak, 95th percentile Measurement uncertainty properties of small EVMs Load-pull Source and Load plane contours of gain, efficiency, ACP, EVM
 Analysis of Cascaded Blocks BER Bit errors, block errors, frame erasure, sync er- rors, Typical measurement system, including loopback mode Sensitivity Definitions, e.g. 1E-3 BER point Transmitter Measurements 	 Receiver Blocking Mechanisms Selectivity Measurements Spurious Response Measurements Measurement techniques analogue IF / IQ / RSSI level sweep with interferer

- Spurious Emissions
- Tx noise in rx band, Har-

 monics and mixing products Transient Behaviour Power - time response, Frequency spectrum due to power burst, Frequency kick due to power ramping ACP Day Three 	 Due to modulation, due to power switching tran- sients Modulation Accuracy - EVM Code Domain Power and PCDE
Eabrication Technologies	
 PCB types Etching tolerances, board layer construction, vias/drill RF System Integration 	sizes, thermal reliefs, implica- tions on RF performance • TDR characterisation
 choosing PCB layer structure grounding strategies coupling between components floorplanning which side of the board to place components to maximise isolation Integration of RF and Baseband 	 shielding / screening, gaskets, effectiveness mismatches when cascading filters and amplifiers, pulling and buffering Tolerancing / Yield Thermal and electrical derating for reliability
 processor clocks getting into receivers system planning to avoid harmonics at specific frequen- cies The Design Verification Process 	 reference spurs on VCOs "hot" supply lines and control lines, and their effect on the system
 What to test and what to look for at each prototype iteration Integration Do's and Don'ts 	 Minimising the number of Prototype Iterations required Automated Design Verifica- tion Testing

se Studies - Products and circuit examples including:

- SM
- N-CDMA
- DECT SK
- WT
- 02.11 series WiFi
- Zigbee GPS

Applied Embedded Control Systems

Course 259

•Sep 14-Sep 18, 2015 - San Jose, CA / Tim Wescott

Summary

This five-day course is a complete course in basic automatic control theory and application, yet requires no prior control system design training. With this advanced knowledge the student will be equipped to address getting the highest performance out of a wide variety of automatic control systems even systems that have such difficult nonlinearities as friction and backlash.

This course includes hands-on sessions with real hardware to demonstrate the practical application of the theory being taught, as it is taught.

Learning Objectives

Upon completing the course the student will be able to:

• Understand the z transform use it in control systems design

•Understand performance measures for control systems

Specify pertinent, useful, and realistic perfor-

Outline

mance measures for control systems

•Read, understand, and compose control system block diaqrams

•Analyze control system behavior by manipulating block diagrams

Analyze control systems for stability, robustness and performance

Use various control system design techniques, including structured design of PID controllers

Use sampling theory to design discrete time control systems for real-world problems

Measure system characteristics through frequency response and interpret the results

•Implement control systems in embedded systems in software

•Deal with the most common real-world issues involved with controlling nonlinear systems

Target Audience

Engineers and managers who are actively designing systems, circuits or software employing embedded processors or FPGAs which must effectively control dynamic systems. In particular, embedded software engineers, embedded circuit designers, systems architects and managers who work with such systems.

Day 1 Basics	• Definition of the z trans-	 Sampling theory, aliasing, fects orthogonal signals, noise, ef- Dealing with Continuous Time The Laplace transform, tems modeling continuous-time sys- cont Day 4 	fects of nonideal sampling
tem, definition of the parts of a control system, formal defi- nitions of signals and systems. Performance	form, modeling systems using transfer functions, system stability.		tems, converting models from continuous to discrete time.
 Establishing performance measures in the time and Hands-on Design 	frequency domains	 Characteristics of nonlinear systems, design by linear ap- Measuring System Character 	proximation, designing with nonlinear compensation steristics
 Design of controllers using Day 2 	pole placement	 Measuring frequency re- Hands-on Design 	sponse
Block Diagramming		 Using measured frequency 	response to tune controllers
 The control system block 	diagram analysis	Software Theory	~
diagramming language, block Analysis		• Data types and their effects, quantization effects, over-	flow and underflow, resource issues.
 Effects of feedback on 	formance and stability in the	Day 5	
performance, estimating per-	face of plant variations.	Software Practice	
 Definition of a controller, evolution of the PID control- 	ler, advanced controllers.	 Implementation examples common controllers using Instructor Q&A 	fractional, floating point, and integer math.
Day 3 Hands-on Design		 A generous portion of time is set aside on the final day 	ware, and for students to pose questions about their own
• Design of controllers using frequency domain design Sampling in the Real World	techniques on plant models (hands-on)	for instructor questions and answers, for hand-on time with the demonstration hard-	control systems for instructor comments and suggestions.

Applied RF II: Advanced Wireless and Microwave Techniques

Course 086

Summary

This five-day course provides participants with an in-depth examination of advanced RF and microwave design techniques. Antennas and filters are covered briefly, followed by a detailed discussion of figures of merit. Mixers and oscillator designs are also evaluated. Considerable attention is devoted to defining, classifying, and improving the efficiency and linearity of power amplifiers. Numerous design examples are provided for participant exploration.

Students are encouraged to bring their laptop computers to class. CAD software will be used to simulate design examples. Learning Objectives

Upon completing the course the student will be able to:

- Select optimum receiver architectures.
- •Describe the practical limitations of small antennas and

Outline

Day One - Receivers and Their Components

Small Antennas	
• Simple	• Efficiency
• Diversity	• Tuning
• Small size	
Filters: a 1 hour overview	
• Performance	• Size
 Limitations 	• Cost
 RF Filter loss 	 Active vs. passive
 Selectivity 	
Receiver Types	
Architectures	• Modulation - how that im-
Performance	pacts architecture
 Limitations 	• Hot spots, the problem areas
Figures of merit: preparing to evalua	te circuit techniques, IC's
 Noise figure 	 DC power tradeoffs
• IIP3	 Spurious response effects
• Match	 Comparing technologies
 Isolation 	
Day Two - Linear Receiver Circuits	5
LNA Design - A 2 Hour Review	
Specification hierarchy	• Intermodulation, cross
• Design	modulation, and blocking
– noise figure	• Evaluating IC performance
– gain	• Design
– match	– Noise figure
 How to choose a device 	– gain
• Review design of a 2.5 GHz	– IIP3
low noise amplifier	• Detailed design of a 1.9 GHz
• LNA and IF amplifier - re-	high IIP3 LNA
ducing non-linearity	• Appying the techniques to a

filters.

•Detect hot spots in proposed designs.

•Use figures of merit to optimize new designs and available integrated circuits.

- •Evaluate spurious responses.
- •Evaluate tradeoffs between noise figure, IIP3, match, isolation and DC power.
- •Design low noise and highly linear amplifiers.
- •Design passive and active mixers.
- •Explain and design VCOs and stable oscillators.
- •Design low distortion and efficient power amplifiers.

•Utilize modern circuit simulators and a simple system simulator.

Target Audience

equivalent circuit

Component and system level designers, as well as engineering managers will benefit from this course. Basic knowledge of microwave measurements and transmission line (Smith Chart) theory is assumed.

high performance IF amplifier	
Specifications	 Mixer types
• Evaluating available Ics	oypoo
Baluns	
• Balance	• Cost
• Size	 Some solutions
• Loss	
Day Three - Non-Linear Design	
Mixers: Diode or FET, Active or Pass	ive?
• Harmonic mixers	• Design of an active, a pas-
 Spurious responses 	sive, and a doubling mixer
LO - Local Oscillator	
 Specifications 	 crossing angle
– noise	– topology
– spurs	– types
– stability	 Detailed designs
 How to choose a device 	– 1GHz VCO
– gain	– 2GHz LO
– size	– 5 GHz DRO
– current	 Stabilization
 technology tradeoffs 	– supply
• Feedback vs. negative resis-	– load
tance oscillators	 temperature effects
 Circuit design overview <i>loop gain</i> 	– squegging
Day Four - Oscillators and Power	r Amplifier Design
Crystal Oscillators	
 An overview 	 Overtone oscillator
• Crystal characteristics and	 what affects noise

spurious output

De vor Amnlifi

Power Amplifiers	
 Introduction Amplifiers classes A through Z Straightforward (Cripps) approach Real device characteristics Day Five - Power Amplifier Design Improving Efficiency 	and their impact • Modelling with harmonic balance and SPICE • Design of a class AB ampli- fier
 Class B and C amplifiers gain load line efficiency enhancement Class E, F and harmonic ter-Multistage design theory 	mination amplifiers: realisticexpectationsPush- pull amplifiers, bipolar and FET
 Driver amplifiers and inter- stage matching, some solu- tions Balanced amplifiers, a 	solution to some matching problems • Design of a 2 stage amplifier

Linearization Techniques

- Predistortion Feed-forward
- Lossless feedback

Applied RF Techniques I Course 001

Summary

Switching from traditional circuit definitions based on voltages and currents, to power-flow concepts and scattering parameters, this course offers a smooth transition into the wireless domain. We review S-parameter measurements and applications for both single-ended (unbalanced) and balanced circuits and have a brief introduction to RF systems and their components. Impedance matching is vitally important in RF systems and we use both graphical (Smith Chart) and analytical techniques throughout the course. We also examine discrete and monolithic component models in their physical forms, discussing parasitic effects and losses, revealing reasons why circuit elements behave in surprising manners at RF.

Filters, resonant circuits and their applications are reviewed through filter tables and modern synthesis techniques, leading into matching networks and matching filter structures. Since wires and printed circuit conductors may behave as transmission line elements, we also cover microstrip and stripline realizations. 2D and 2,5D electromagnetic field simulators are used in the course to illustrate transmission line behavior and component coupling effects.

In the area of active circuits, we first examine fundamental limitations posed by noise and distortion. The next topic is small-signal linear amplifier design, based on scattering parameter techniques, considering input/output match and gain flatness RF stability is examined both with S-parameters and also with the Nyquist test using nonlinear device models. Since DC biasing affects RF performance, we review active and passive bias circuits and see how they can be combined with impedance matching circuits. Another important consideration is circuit layout, therefore we look at problems caused by coupling, grounding and parasitic resistance. Narrow- and broadband designs are compared, using lossless and lossy impedance matching as well as feedback circuits. Low-noise amplifier design is illustrated, discussing trade-offs among gain flatness, noise, RF stability, and impedance match. Harmonic and inter-modulation performance is also examined. Performance trade-offs of balanced amplifiers are viewed. The course concludes by examining large-signal and ultra wideband feedback amplifiers.

Students are encouraged to bring their laptop computers to class. CAD software is used in this course.

Learning Objectives

Upon completing the course the student will be able to:

- Describe RF circuit parameters and terminology.
- •State the effects of parasitics on circuit performance at RF.
- •Use graphical design techniques and the Smith Chart.
- •Match impedances and perform transformations.
- •Design filters with lumped and distributed components.
- •Perform statistical analysis: design centering, yield optimization.

•Predict RF circuit stability and stabilize circuits.

•Design various RF amplifiers: small-signal, low-noise, and feedback.

Target Audience

The course is designed for practicing engineers who are involved with the production, test, and development of RF/ Wireless components, circuits, sub-systems, and systems, in the 100-4000 MHz frequency range. It is equally useful to new engineers and to those who may have practical experience but have not had opportunity of getting a thorough foundation of modern, computer-oriented RF circuit techniques. Engineering degree or at least three years applicable practical experience is recommended.

Outline

Day One

Introduction	to RF	Circuits
--------------	-------	----------

 Linear circuit analysis in RF systems Frequency range of coverage: 100-3000 MHz Log conversion, dB and dBm scales Complex numbers in rectan-CAE/CAD Applications 	 gular and polar form Component Qs Importance of Impedance Matching Normalization RF component related issues 	 Colladmi admi Re On admi Sei conv Lu
 Computer Aided Design Methods Major Optimization Methods in Microwave CAD Network Synthesis Proce- dure 12 	 Physical Limitation on Broadband Impedance Match- ing Electromagnetic (EM) Simu- lation Reliability and Yield Consid- 	ment • Ch and c The S • Pol Z plo

erations RF/MW Fundamentals	• Monte Carlo Simulation
 Complex impedance and admittance systems Resonance effects One-port impedance and admittance Series and parallel circuit conversions 	 Signal transmission/reflection and directional couplers Key parameters Gamma mismatch loss return loss SWR
 Lumped vs. distributed ele- ment representation Characteristic impedance and electrical length The Smith Chart and Its Application 	 Impedance transformation and matching Illustrative exercise s
 Polar Gamma vs. Rectangular Z plots 	• Impedance and Admittance Smith Charts

 Normalized Smith Charts Lumped series/parallel element manipulations Constant Q circles Expanded and compressed Smith Charts Scattering Parameters Review of one-port parameters Two-port Z-, Y-, and T-parameters 	 Impedance and admittance transformations Transmission line manipula- tions Illustrative examples S-parameters of commonly used two-ports Generalized S-parameters Illustrative examples 	 Linear circuit definition Amplifier Performance Limitations Thermal Noise Definition Harmonic Distortion Definitions Gain Compression Intermodulation Distortion Spurious-Free Dynamic Range Small Signal Amplifier Design 	 Error Vector Magnitude Various Power Gain Definitions Testing for RF Stability Causes of RF Oscillation Typical Stability Circles for an RF Transistor RF Stabilization Techniques Nyquist Stability Analysis
• Cascade connections and de-	 Mixed-mode S-parameters 	Transducer Gain Expression	Diagram
embedding		• Simultaneous Conjugate	• Operating Gain Definitions
Day Two		Match for Maximum Gain	• Operating Gain Circle Ap-
Impedance Matching Techniques		Class Exercise Thus store Amplifier Design	Plication
Power-flow in two-port	• Bandwidth and parasitic	• Iwo-stage Ampliner Design	Maximizing Output Power Augilable Cain Definitions
networks	CONSIDERATIONS	• Gain Definition - Block	Available Gain Deminions Available Gain Circles
• Halisillission zeros, LC net-	• Wideballu Illatell low		· Available Gain Circles
Maximum nower transfer	 Narrowhand match high 	Low Noise Amplifier Design	
from 7.1 to 7.2	circuit-0	Sources of RF noise	• Two-port noise parameters
• Single LC-section impedance	 Illustrative examples 	 Noise Factor and Noise Fig- 	• Low-noise design procedure
matching	r i i i i i i i i i i i i i i i i i i i	ure definitions	• Illustrative example
Lumped RF Component Models		 Noise of cascaded stages 	-
Resistors	variations	Broadband Amplifiers	
 Inductors 	 Definitions of Magnetic 	 Broadband Concepts 	
• Effective Inductance and Q	Properties	• Wideband Amplifier Design	
Variations	Magnetic Core Applications	Overview	
• Capacitors	Ferrite Bead Impedance Francisco Commission	Voltage Gain Phase Shift	
• Effective Capacitance and Q	• Exercise: Complex Imped-	• Gain Control and Impedance	
Primary self-resonance	ance Matching	fiers	
		 Series and Parallel Feedback 	
Transmission Lines and Ground Para	sitics	Applications	
• Via-Hole and Wrap-Around	ferential Vias	• 10-4000 MHz Feedback Am-	
Ground Inductance	PC Board Materials	plifier Design	
• Parasitic Inductance and	• Transmission Line Realiza-	• Equivalent Circuit for Micro-	
Capacitance Effects at RF	tions	wave FET	
• Multilayer PC-Board Parasit-	• Transmission Line Disconti-	 Lumped Transmission Line 	
ics	nuities	and Distributed Amplifier	
 PCB/Interconnects 	 Converting an Electrical 	 Mitigating Cdg: the Cascode 	
• Open Stub Effects in Dif-	Circuit to Physical Form		
Filters and Resonant Circuits			
Introduction	Impedance inverters		
• Recipes for tumped-element	• Dallu pass litters with reso-		
Parasitic loss and 0 factor	Piezoelectric filters		
Active Circuit Fundamentals			

Applied RF Techniques II Course 003

Summary

This five-day course is a follow up course to Applied RF Techniques I and provides participants with the critical tools to design, analyze, test, and integrate nonlinear transmitter and receiver circuits and subsystems. Circuit level engineers will master the latest nonlinear design techniques to both analyze and design transceiver circuits. System engineers will examine commercially available integrated circuit functions; learn the performance limits and how to establish specifications. Test engineers will learn how to test and evaluate circuits. Transceiver circuits to be covered include power amplifiers and the critical receiver elements: oscillators and mixers. Receiver architecture and synthesizer design to meet critical requirements will be presented. Techniques to successfully integrate circuit functions for the transceiver will be presented.

Students are encouraged to bring their laptop computers to class. CAD software will be used to simulate design examples.

Learning Objectives

Upon completing the course the student will be able to:

•Understand and quantify nonlinear effects of transmit and

Outline

Day One **Nonlinear Circuits & Concepts High Efficiency Power Amplifier Design** • Transmitter elements and • Predicting output power modulation contours, design examples • High efficiency techniques • PA transistors • Matching for maximum gain • Class A, B, C, D, E, F, harmonic termination consideror output power • Load-pull measurement ation techniques • Power combining **Nonlinearities in RF Amplifiers** Day Two **Power Amplifier Distortion Reduction Techniques** power back-off • digital predistortion • Cartesian feedback • feed-forward fixed predistortion • LINC • RF predistortion Alternate transmitters • Kahn, Polar, Doherty, Chierix-Outphasing **CAD of Nonlinear Circuits** • Nonlinear circuit analy-• Complete BJT and FET CAD circuit design example sis and transistor nonlinear models **Day Three Receivers and Their Architecture**

receive systems

•Use CAD nonlinear models to analyze/design circuits and transceivers

•Design efficient linear power amplifiers, using load pull data, as well as full nonlinear techniques for digital and analog input signals

•Compare and select various transmitter distortion reduction techniques

•Design high dynamic range sensitive receivers with multiple input signals

•Design signal sources using advanced phased lock loop techniques

•Design/specify/test low noise oscillators (DROs, Crystal, VCOs, VCXOs) and predict/minimize phase noise

•Design/specify/test passive and active mixers with various configurations and compare performance

•Integrate circuit functions considering PCB selection, grounding, interconnection techniques, isolation, and component interaction

Target Audience

Component and system designers, engineering managers, test and engineering technicians will benefit from this course. Applied RF Techniques I or equivalent practical experience is recommended for this course.

• RF receiver types, perfor- mance characteristics, com- parison	 A/D considerations Receiver nonlinearities
Modulation Techniques	
 AM, FM, digital Receiver architectures and design amplification, filter- 	ing, LO selection, mixing, demodulation • Testing
Frequency synthesis, PLL design	
Day Four	
Feedback and negative resistance of	scillator design
• RF stability, pushing, pull- AM FM Noise Considerations	ing considerations
• Low phase-noise design Dielectric Resonators	• Post tuning drift
• Dielectric resonator stability VCOs and crystal oscillators	techniques
• Electronic tuning strategies	testing
• Oscillator specification,	• Commercially available VCO's
Day Five	
Diode and Transistor Mixers	
 resistive and active, design examples Mixer types single, balanced, doubly 	balanced, image reject, im- age enhanced, harmonic • Conversion loss/gain

Harmonic suppression, linearity, and dynamic range

Integrated assemblies

• PCB materials, grounding, layout and interconnection

techniques, isolation, compo-nent interaction

Transceiver Integration

• Commercially available transceiver IC chips

Behavioural Modeling & Digital Pre-Distortion of RF Power Amplifiers Course 212

Summary

The goals of RF power amplifier design are high efficiency and linearity. With modern cellular communications modulation formats such as LTE and WCDMA these goals are difficult to achieve simultaneously with traditional RF PAs, and high-efficiency architectures such as Doherty, Envelope Tracking, and so forth are becoming more commonplace. These PAs require an additional linearization system to achieve the mandated linearity specifications. The emergence of high-speed digital signal processing techniques has enabled the linearization to be accomplished in the digital signal domain, and digital predistortion (DPD) is now the preferred linearization technique. This course explains the nonlinear behaviour of RF power amplifiers, developing general modeling techniques to describe the nonlinearities and memory effects. A system-level approach to the modeling and linearization of the PA is adopted, and techniques for implementation of DPD in practical situations are described.

Outline

Day One

RF Power Amplifiers in Modern Wireless Communications Systems:			
• Modern Wireless Communi-	• High-efficiency PA archi-		
cations modulations formats:	tectures: Doherty, Envelope		
LTE, WCDMA	Tracking		
• Signal Metrics: Peak-to-	• PA metrics: AM-AM,		
Average Power Ratio	AM-PM, ACLR, EVM		
Introduction to Models and Modeling			
 Compact models, Behav- 	 Introduction to System 		
ioural models	Identification methods		
Day Two			
Behavioural Modeling Methods			
 Nonlinear modeling 	and practical implementations		
 Memory effects 	 Frequency-domain models 		
• Nonlinear dynamical models:	and methods: X-parameters		

Volterra Series formulations

Learning Objectives

Upon completing the course the student will be able to:

Understand and describe the nonlinear behaviour and memory effects found in RF power amplifiers
Use and understand the mathematical algorithms for behavioural modeling and digital pre-distortion
Use and implement digital pre-distortion methods for linearization of RF Pas
Evaluate and compare modeling and DPD techniques

Target Audience

This course is suitable for RF PA designers, DSP designers, and System-Level engineers who are involved in the specification, design, and implementation of linearized RF PAs and transmitter systems, or who are developing pre-distortion methods, software and algorithms for linearization of RF PAs. Electrical Engineering degree or equivalent and at least two years applicable practical experience is recommended.

Day Three

Digital Pre-Distortion Methods
 Typical approaches using
digital control techniques;
'indirect learning'; LUT and
algorithmic approaches
 Adaption techniques: con-
vergence, optimization
• DPD implementations: archi-
tectures and hardware, system
components
 Practical and commercial
DPD systems overview

BER, EVM, & Digital Modulation Testing for Test & Product Engineers Course 221

Summary

This class focuses on learning and applying BER and EVM measurement techniques to RF SOC/SIP products and is ideal for test and product engineers working with production ATE (Automatic Test Equipment). Each pair of students will be given hardware and software to use during the class. Throughout the class students will develop BER and EVM test solutions and analyze and compare results. Students will get to develop both parametric and system level test solutions that are used throughout industry for a variety of RF and Mixed Signal devices including: ZigBee, Bluetooth, DECT, WiFi, FM, GPS, 3G 4G mobile/cellular phones. Students will develop EVM & BER test solutions for OOK, BPSK, QPSK, QAM, AM/FM, and OFDM modulation for production ATE.

Student solutions will include: BER Sensitivity, BER with interferences (Co-Channel, Adjacent Channel), Frequency Hopping BER, and EVM.

Parametric measurements that students will develop include: INL/DNL, SNR, audio SINAD, audio THD, Harmonics, SFDR, IQ Amplitude/Phase imbalances,PLL/Synthesizer settling time, and Carrier Drift.

Students will spend a majority of the class time using real hardware and software to generate, capture and analyze various modulated signals. Students will get to compare and optimize testing solutions to achieve the best results. Hardware and Software Provided:

Each pair of students will be provided with an FM transmitter that will be used during the class to transmit and receive

Outline

Day One	
Analog Measurements	
 DACs (Digital-to-Analog Converters) ADCs (Analog-to-Digital 	 Missing Codes FFT Overview Dvnamic Range
Converters) • Static DNL/INL testing (Dif-	• ENOB (Effective Number of Bits)
ferential Non-Linearity and Integral Non-Linearity) • Generating Ramps	Quantization NoiseDC OffsetsHistogram testing
Day Two Applied Mixed Signal Testing	
 Time Domain / Frequency Domain Analysis Random Processes and Gaussian Distributions Digitizer Sampling Coherency Aliasing Day Three 	 SNR Undersampling Oversampling Decimation Filter Testing Noise

signals to and from other students. Signals will be created, analyzed and measured using a USB Data Acquisition (DAQ) device

Learning Objectives

Upon completing the course the student will be able to:

•Implement modern system level tests including physical layer BER and packet based BER & EVM on RF SOC and SIP devices. •Implement static (INL/DNL) and dynamic (SNR, SFDR, THD, etc.) measurements on DACs (Digital-to-Analog Converters) and ADCs. (Analog-to-Digital Converters) utilizing best known techniques Undersampling, Oversampling, Decimation, Digital Filtering, and Averaging) to achieve lowest COT and best production test results.

•Implement traditional parametric measurements like Gain, Intermodulation Distortion, Harmonics, Jitter, Noise, Phase noise, Spectral Mask in a production testing environment.

Target Audience

The course is designed for new and practicing test/application/product engineers who are tasked with developing production and manufacturing test solutions using ATE (Automatic Test Equipment) and other instrumentation for wireless SOC/SIP chipsets including: 2G/3G/4G, WiFi, ZigBee, GPS, Bluetooth, etc.

Student Requirements:

Students will control and operate hardware using student supplied laptop. Laptop should have Windows XP, or Windows 7. Software and drivers to control the hardware will be supplied and installed at the beginning of class.

Applied Mixed Signal and RF Testing

 Dynamic Testing using 	• Jitter
Sinusoids	 Multi-tone testing
• IMD	 Intermodulation Distortion
• SINAD	• NPR
• THD	 Baseband Signaling
• Cross Talk	 IQ Modulator
• SFDR	 IQ Amplitude/Phase Imbal-
• ACPR	ance
 Spectral Mask 	 Carrier/LO/Side Band Sup-
• CMRR	pression
Generating Modulated Signals	
 Generating, Transmitting, 	• IQ Trajectory
Capturing and Analyzing AM/	 Synthesizer Lock Time
FM/00K/BPSK Modulated	 Calculating/Correcting Fre-
Signals	quency Drift
 Pulse Shaping 	• Calculating/Correcting Phase
 IQ Constellation 	and Frequency Errors
Day Four	
BER and EVM Testing	

- QAM
- Generating, Transmitting, Capturing and Analyzing QPSK/QAM Modulated Signals
- Generating,
- Capturing, and Analyzing

OFDM Signals

- Implementing System Level
- BER & EVM Measurements • Packet Based BER & EVM

Testing

Day Five

Advanced BER and EVM Testing

• BER Sensitivity Testing, EVM • Channel)

(per Symbol)

- BER & EVM Interference
- Testing (Co-channel, Adjacent

Cavity Filters and Multiplexers for Wireless Applications

Summary

Low loss and highly selective filters and multiplexers are key components in the wireless networks that surround us. A low loss diplexer allows the transmitter and receiver of a basestation to simultaneously share the same antenna. The same filter must also guarantee that co-located basestations using competing transmission standards do not interfere with each other. Many of these filters and multiplexers are based on cavity combline technology, which is relatively simple to manufacture. Others are based on dielectric resonator (DR) technology that can realize a high quality factor (Q) filter in a smaller volume.

Introducing non-adjacent couplings (cross-couplings) into a microwave filter can generate transmission zeros in the lower and or upper stopbands. It is the filter order and the clever placement of these transmission zeros that generates the selectivity needed for wireless applications. The theory of cross-coupled filters was first introduced in the 1960's. It was then adopted for satellite multiplexer applications in the 1970's and for wireless applications in the following decades.

EM simulation is also an essential component of modern cavity filter design. We now have the ability to model and optimize complete filter structures in the EM domain. These virtual prototypes have greatly reduced the number of hardware prototypes that must be built and tuned. Occasionally, we find unexpected spurious couplings in our virtual EM prototypes that prevent us from tuning the filter to the desired response. These spurious couplings would be very difficult and expensive to diagnose after the hardware is built.

This course is focused on practical filter design methods for cavity combline filters for wireless systems. The core material is a universal procedure for narrow band filter design that can be applied to virtually any filter technology or topology. The procedure is rooted in Dishal's method with powerful extensions that include the port tuning concept, equal ripple optimization techniques, and efficient EM simulation. All the techniques presented can be implemented using commercially available CAD tools.

Practical procedures for extracting unloaded Q, external Q, and coupling coefficients are quite important in the design process and in evaluating prototypes. These techniques will include extracting data from hardware and from EM simulations. Some tutorial material on field-solvers will also be presented. The EM simulation examples relate specifically to cavity filter design and include tips and techniques for more accurate and efficient simulation.

Example filter designs will be presented with measured data and error analysis. The instructor will choose examples to develop based on the interests of the class. DAY ONE We will present the briefest possible introduction to basic filter design concepts. Starting with lowpass prototypes, we will touch on Chebyshev and elliptic prototypes and finding prototype element values. Next we will turn to a brief overview of the most common filter design techniques. Topics will include synthesis from an insertion or return loss function, the coupling matrix approach, and synthesis by optimization. The use of general purpose linear simulators for equal-ripple optimization will also be discussed. Finally, we will introduce the port tuning concept.

DAY TWO

Our approach to narrow band filter design starts with Dishal's method and moves a step beyond with port tuning of a full EM model. The port tuned model is a virtual prototype that can be diagnosed and optimized before any hardware is built. Modern TEM filters often employ cascade triplets and quads to realize transmission zeros in the stopband or flatten group delay in the passband. These filters can also be designed using our approach. At some point, practical procedures are needed to measure unloaded Q, external Q, and coupling coefficients. Systematic methods for tuning filters are also needed. All of these methods and procedures can be applied to actual hardware or to an EM simulation of the hardware. DAY THREE

When high unloaded Q is required, designers often turn to cavity combline or dielectric resonator filters. Combline and DR filters are now used in high volumes in wireless base stations. Meeting customer requirements often requires additional transmission zeros in the stopbands, which are realized using various types of cross-couplings. Some applications also call for these high performance filters to be diplexed or multiplexed. Again, strategies for efficient design and EM simulation will be discussed for all the topologies presented.

Learning Objectives

Upon completing the course the student will be able to:

use a universal procedure for narrow band filter design that can be applied to virtually any filter technology or topology
understand fundamentals of practical filter design for RF and microwave systems

•apply Dishal's method - with powerful extensions that include the port tuning concept, equal ripple optimization techniques, and efficient EM simulation

extract data from hardware and from EM simulations
extract unloaded Q, external Q, and coupling coefficients during the design process and in evaluating prototypes

Target Audience

The course material is suitable for filter designers, designers of other components, systems engineers, and technical managers.

Outline

Day One

Introduction to Filter Design, Optimization, and Port Tuning		
 Coupling Matrix Approach 		
 Synthesis by Optimization 		
 Equal-ripple Optimization 		
 The Port Tuning Concept 		

Day Two

Narrow Band Filter Design and EM Simulation

- Narrow Band Filter Design External Q
 - Coupling CoefficientsFilter Tuning
- Cascade Triplets and QuadsEM Filter Prototypes
- EM Filter Prototypes
 Unloaded Q

Day Three

Designing Combline Filters, DR Filters, and Multiplexers

- Cavity Combline Filters
- Dielectric Resonator Filters
- Diplexers and Multiplexers
- Strategies for Design and EM
- Simulation

CMOS RF Circuit Design

Summary

The surge in demand for high performance and low cost wireless circuits has accelerated the shift to CMOS RFIC technology. As future wireless radios continue to push the available bandwidth and shift to mm-wave range, RF CMOS is expected to remain the predominant technology. This 3-day course will cover in depth the practical aspects of CMOS RF design at both the circuit and device level. The course will begin by an overview of the CMOS transistor and passives from RF perspective, analyzing key concepts in modeling and noise behavior. An overview of various RF circuit blocks highlighting design architectures and circuit implementation tradeoffs will be provided. This will include selected topics in designing low noise amplifiers (LNAs), mixers, voltage controlled oscillators (VCOs) and power amplifiers (PAs). The course will provide insightful quidance in the circuit design process including transistor sizing, layout effects, parasitic reduction techniques and tradeoffs between various circuit topologies. The focus throughout this course will be on providing practical circuit design and implementation techniques utilizing numerous design examples.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day 1

• CMOS technology overview (applications and technology trends)

• Analog device models including long and short channel effects

• RF CMOS model for high frequency operations (gate Day 2

• Low noise amplifier design (input matching, gain and linearity analysis, noise figure, stability analysis, narrowband vs. wideband design, LNA topologies, design examples) and channel resistance and non-quasi static effects)

- Modeling RF passives (inductors, capacitors and resistors)
- Impedance Transformation & Matching Networks
- CMOS Noise Models and
- minimum noise figure

• Mixer design (principle of operation, passive vs. active mixers, Gilbert cell mixers, linearity and noise analysis , port isolation, image reject mixers) •Learn and utilize accurate RF CMOS transistor and passive models

•Understand various parasitic effects due to layout and substrate

•Arrive at an in-depth understanding of CMOS noise sources and account for them in various circuits

•Design, at the basic level, CMOS RF LNAs, mixers, VCOs and Pas

•Understand the tradeoffs in circuit architectures and how they translate to RF systems parameters

(e.g. noise figure, IIP3, phase noise, etc.)

•Design matching elements and utilize them in various circuit blocks

•Use simple back-of-the-envelope calculations to predict RF circuits' performance

•Analyze the impact of CMOS technology scaling on various circuit blocks

Target Audience

RFIC and analog baseband design engineers, researchers and graduate students who are interested in designing CMOS RF circuits. In addition, RFIC engineers who specialize in GaAs and other III-V technologies will also find this course useful in learning how to transition to CMOS technology. Technical managers will also learn current technology limitations and future technology trends.

Day 3

• Voltage controlled oscillators (Figures of merit, oscillation conditions, phase noise, types of oscillator topologies; ring oscillator, Colpitt oscillator, -gm oscillator, design examples)

• Power amplifiers (Figures of merit; efficiency and linearity, impedance matching, linear vs. non linear classes of operation, design examples)

Cognitive Radios, Networks, and Systems for Digital Communications Course 251

Summary

This seminar provides a tutorial on multiple cognitive functions and capabilities at multiple levels including an overall cognitive system approach to reduce the effects of the environment. It covers a wide range of cognitive techniques, including cognitive radios, dynamic spectrum access DSA, adaptive power control using control theory for stability, adaptive modulation, adaptive spreading and error correction, dynamic antenna techniques using AESAs, cognitive antennas and MIMO, adaptive filters, orthogonalizing techniques, cognitive re-configuration of networks including mesh and Adhoc networks, optimizing networks, learning and reasoning techniques for cognitive decisions, goal conflicts, and cognitive system approach utilizing all available adaptive and controllable capabilities in the system. In addition, several examples and step processes are discussed to determine the optimal solutions and tradeoffs between the many cognitive capabilities.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the concepts and definition of cognitive and adaptive processes.

•Realize the need to provide cognitive process for the future digital communication links and networks

•Evaluate the reasons for poor QoS for a digital communication system and learn of the many different cognitive techniques to mitigate their effects.

•Learn how to use Dynamic Spectrum Access DSA in a cognitive system and the process and flow of each of the nodes in a network.

•Understand adaptive power control in a cognitive system and learn what is needed for an open loop solution and a stable

Outline

Day 1

- Cognitive Technique for a changing environment
- Definition of Cognition
- Cognitive radios using software defined radios
- Cognitive goals
- Cognitive capabilities
- Evaluation of the environment

Day 2

• Adaptive Burst clamp

- Adaptive techniques includ-
- ing DSA, power control for a stable closed-loop solution, modulation, spread spectrum, and error correction, interleaving, detection, cosite filters, multi-hop adhoc meshed networks.
- Demodulation Techniques

closed loop power control system between two usersAnalyze the methods to incorporate cognitive modulations

and the advantages and disadvantages of higher order modulation techniques..

•Understand additional cognitive capabilities including adaptive filters, adaptive burst clamps, adaptive error correction and interleaving, spread spectrum, adaptive signal detection, and orthogonality methods.

•Evaluate the techniques used to incorporate cognitive processes including software defined radios, software defined networks, and low-cost available system for use in test and evaluation of the cognitive processes.

•Perform trade-offs between multiple capabilities to provide the optimal cognitive solution for the minimal cost of effect on the system.

•Understand controllable AESA antennas for null-steering, beam forming, directivity, multipath communications, and MIMO systems.

•Evaluate cognitive techniques using learning, reasoning, monitor and control, and goals for the cognitive system.

•Understand how Mobile Adhoc NETworks MANET can using cognitive processes to improve their performance.

•Realize the need for a complete cognitive solution using all available capabilities over single cognitive components.

Target Audience

This course will be of interest to RF, analog, digital, systems and software engineers and managers who are interested in learning more about cognitive capabilities and learning how to evaluate and improve the total system through cognitive system processes.

This applies to both those that want to gain an understanding of basic cognitive capabilities and those that are experienced engineers that want a better understanding of cognitive processes.

 Adaptive Filters for narrowband band suppression in a wideband signal

• Adaptive Orthogonal functions to reduce jammer effects

 Adaptive and Cognitive Networking and capabilities to perform Tradeoffs

• Dynamic antenna techniques and capabilities including MIMO for system cognition

- Cognitive MANET networks
- Combined cognitive system

solution by evaluation of all system capabilities

• Learning and reasoning techniques for improved cognitive capability

• Monitor and control functions, and goal conflicts

• Cognitive system control processes and examples for optimizing the system solution

• Parallel evolution preferred over serial 'stovepipe' solutions to cognition

Design of CMOS Power Amplifiers

Course 254

•Oct 5-Oct 9, 2015 - Web Classroom, WebEx / Malcolm Smith

Summarv

Until recently, power amplifiers have been considered the exclusive province of GaAs, GaN, Si LDMOS and other processes. Recently, there has been renewed interest in the use of CMOS for power amplifiers targeted at the mobile market. Aside from the potential to integrate the PA with the transceiver chip or front-end switch, the main driving factors have been cost and access to a standard foundry process. Although CMOS processes offer significant cost benefits, MOS transistors do have performance limitations when compared to other processes being used for PA design. These limitations require design changes to enable CMOS to be used from PA design. As a result, although there are many similarities to PA design in other processes there are additional aspects that are unfamiliar to PA designers. Therefore CMOS PA design requires a combination of the skills of a PA designer with those of an RFIC design engineer.

This seminar contains material typically covered in one full day of instruction but is divided into five 90 minute webclassroom presentations.(9:00am to 10:30am Pacific time) Each daily session is a live event but the recording can be made available for up to 7 days to support students requiring a more convenient viewing time. Please contact the office for details at info@besserassociates.com.

Outline

Web Classroom

PA Basics	
 Introduction 	 Class of operation
 Load-line theory 	– A, AB, B, C
• Load Pull	 Stability
CMOS Reliability	
• Mechanisms of MOS perfor-	concerns
mance failure	• ESD
 Maximum stress limits 	 Approaches to CMOS PA
expected	implementation
 MOS transistor tolerance 	 Cascode output structure
limits	and operation
 Output network reliability 	
Switching Mode CMOS Power Ampl	ifiers
• Switching mode amplifier	 Class D and Class E
tunes	 Stability concerns

cypes

Stability concerns

This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.

Students will receive a signed Certificate of Completion.

Learning Objectives

Upon completing the course the student will be able to:

•Understand PA basics and the differences in design for power and design for gain

- •Understand tradeoffs in class of operation
- •Understand the differences and trade-offs in saturated and linear amplifier design
- •Describe the limitations of the MOS transistor when used in power applications

•Understand techniques used to overcome MOS limitations **Target Audience**

RFIC and analog baseband design engineers, researchers and graduate students who are interested in designing CMOS PA circuits. In addition, RFIC engineers who specialize in GaAs and other III-V technologies will also find this course useful in learning how to transition to CMOS technology. Technical managers will also learn current technology limitations and

Linear CMOS Power Amplifiers

future technology trends.

- Definition of a linear amplifier Explanation of linearity specifications
- Gain enhancement and gain compression
- Phase non-linearities in CMOS
- Linearizing a PA
- Advantages and disadvantages of linearization schemes
- Class F introduction

Digital Mobile and Wireless Communications- The Radio Interface for 4G, IMT-Advanced, 5G, Broadband Wireless Access

Course 016

Summary

The goal of this course is to introduce the participant to those digital modulation methods, coding techniques, space, time and frequency diversity techniques and multiple access techniques presently in use or being considered for use in mobile wireless and/or broadband wireless communication systems (many of these techniques are also used in satellite, wireline, and power-line communications).

The future is already here! Amazingly, 4G-LTE- Fourth Generation (and Mobile Wi-Max) systems based on OFDMA have entered commercial use in the past three years. The actual IMT-Advanced Fourth Generation Standards were published two years ago, and now industry is discussing the standard for 5G-LTE, Fifth Generation Systems. We will discuss some new concepts being considered for 5G including HetNets. Orthogonal Frequency Division Multiplexing (OFDM) techniques are used in almost all of the new broadband wireless and mobile wireless access systems, e.g., 3G-LTE, 4G-LTE, 5G-LTE, IEEE802.11a,g and n (Wi-Fi), Wi-Gig (60 GHz), IEEE 802.16e (Wi-Max and "Mobile" Wi-Max), the WiMedia Alliance, IEEE 802.15 and IEEE 802.22 Standard.

The OFDM techniques consist of OFDM, OFDMA, and SC-FDMA. These systems use MIMO and advanced coding concepts, as well carrier aggregation techniques to improve performance. We will cover all of these topics during the course. We will also describe relatively new concepts such as massive MIMO. We will discuss the very important DMT implementation of the OFDM modulations.

We will also study the modulations and multiple access techniques (including CDMA and WCDMA) in use in present Second and Third-Generation systems including the (UMTS) IMT-2000 Third Generation Mobile Systems.

In addition to the OFDM-based modulations mentioned above, we will discuss QAM, QPSK, MPSK, PAM and continuous phase modulations (CPM), e.g., GMSK. All of these modulations are being used in wireless, satellite and wireline communication systems.

We will devote much time to the subject of BLAST and MIMO (Multiple-Input Multiple-Output) antenna systems. These techniques have been introduced in modern broadband wireless communications. We will also describe some recent ideas such as massive MIMO.

As previously mentioned, we will discuss the coding techniques used in the mobile/wireless broadband systems, including convolutional coding, turbo-coding and iterative decoding techniques. The idea of combining MIMO antenna arrays with OFDM, and coding, is an attractive idea for present and future broadband and mobile wireless systems.

In addition to all of the above, we will also devote time to a discussion of the bounds, or limits, on communications based on Shannon's Information Theory. It is Shannon's work, which has led to breakthroughs in coding, OFDM (multitone) communications, MIMO and much more.

At the end of the course, we will also describe the now classic multiple access techniques, e.g., CDMA, WCDMA, FDMA, and TDMA, used in the physical or radio interfaces of mobile wireless and broadband wireless systems. We will include a discussion of the radio interfaces of IS-95 and WCDMA, including topics such as Walsh codes and OVSF codes, the RAKE receiver, pseudo-random sequences, intra-cell and intercell interference, Gold codes and synchronization techniques.

We will also discuss some of the new ideas being considered for 5G-LTE systems including HetNets, and backhaul problem.

Learning Objectives

Upon completing the course the student will be able to:

•Understand multiple access techniques such as OFDMA, the multiple access technique used in broadband wireless access and 4G/LTE mobile systems.

•Understand BLAST and MIMO concepts and how they are used to greatly improve bandwidth efficiency for wireless communications.

•Analyze new techniques to improve communications efficiency, such as adaptive modulation and coding techniques, OFDM, space-time coding and iterative techniques.

•Evaluate the performance of modulations on channels with Rayleigh fading, and the diversity techniques used to overcome degradation caused by fading.

•Analyze different modulations and multiple access techniques, on the basis of detectability, bandwidth and complexity of implementation

Understand constant envelope CPM modulations such as GMSK, used in the GSM, GPRS, Bluetooth, and EDGE systems.
describe the latest and future commercial wireless systems and understand the underlying technologies that have been selected to implement them.

Target Audience

This course will be of interest to hardware, software and systems engineers who are entering the field of communication systems, or experienced engineers who are not familiar with modern modulations and concepts. The course participant should have some familiarity with the Fourier Transform and the topic of probability. An electrical engineering background (BSEE or equivalent practical experience) is recommended.

Outline

Day One		• Radio Interface- Wi-Gig (60	FDMA)-3G-LTE and 4G-LTE
Introduction - A "Bit" of History		GHz)	• Carrier Aggregation for 4G-
• Brief Review of Wireless	 Cellular Concept-Femtocells 	 Radio Interface of IEEE 	LTE
Communications Concepts	• Frequency Reuse	802.16e- (Wi-Max and Mobile	• MIMO in 4G-LTE
The Fading Channel		Wi-Max) (Optional topic)	• New Ideas for 5G-LTE-Het-
• Multipath Rayleigh Fading	 Introduction to Diversity 	 SC-FDMA (Single Carrier 	Nets, MU-MIMO
Delay Spread	Techniques	Coding Techniques	
• Frequency Selective Fading	-	Block Coding	
Brief Review of Important Concepts		• Interleaving for the Fading	• Performance with coding
Fourier transform	• Power spectral density	Channel	and interleaving
 Probability 	• White Gaussian noise	Viterbi Algorithm and Trellis Coding	5
Introduction to Analog and Digital M	lodulations	• Viterbi Algorithm- What is	Channels
Dav Two		it?	• Performance on a Rayleigh
Nyquist Baseband Signaling		• Trellis (Ungerboeck) Coding	Fading Channel
Raised-Cosine Filters	• Decision Feedback Equaliza-	• Performance Gains	– Viterbi Equalizer
• Optimum Filtering-Square-	tion-Introduction	 Interleaving for Fading 	(GSM)
Root Nyquist Filters	 Duobinary Signaling 	Convolutional Coding	
Linear Equalization	Partial Response Signals	• Performance on the Fading	Channel
Modulations and Performance	J I I I I I J J I I	Day Four	
 Modulation Definitions 	– MFSK	Turbo-coding- Iterative Decoding Co	ncepts
– BPSK	• Optimum Detection of Bi-	• Turbo-Coding –What is it?	– Space and Antenna
– OPSK	nary Signals	Interative Decoding	Diversity
– MPSK	• The Optimum Detector	Iterative Decoding Combined	– <i>CPM</i>
– OAM	 Matched Filter 	with	• OFDM, MIMO and Coding
– BFSK		– Faualization	• Introduction to LDPC Codes
BPSK and BFSK Modulations		- OFDM	
• Spectra, Detectability, Syn-	• Optimum FSK	Information Theory Bounds on Fadin	g Channels
chronization	1	• Capacity for MIMO, MISO,	SIMO and SISO Systems
Performance of Modulations on Ray	leigh Fading Channels	Space-Time Coding	
BER Performance-No	SIMO	Alamouti Coding	 MIMO-OFDM-Coding
diversity-SIS0	 Detectability Performance 	Multi-user Diversity	g
Classic Antenna Diversity-	for SIM0	Continuous Phase Modulations (CPI	(I)
Multiple-Input Multiple Output (MIN	IO) Antenna Diversity	• TFM, GTFM, GMSK (GSM,	• CPM, Coding and Iterative
 MIMO Concept 	Massive MIM0	DCS, DECT, Bluetooth)	Decoding
BLAST Concept	• Beam-Forming Techniques	Adjacent Channel Interference	20000000
MSK-type Signals	J J J J	Non-coherent Detection	
• QPSK, SQPSK, pi/4-QPSK	• Adjacent Channel Crosstalk	• DPSK	
• MSK, SFSK	• ACI Cancellation Techniques	The FM Receiver (DECT, Bluetooth)	
M-ary Signals	1	• FSK	• CPM signals
Optimum Detection	 Nyguist Modulating Signals 	Day Five	0111 019-000
• MPSK, QAM, MFSK	51 55		
Information Theory		• The Concents	– Power Control
• A brief review of important	Multitone Concept	- RAKE Receiver	 Intra and Intercell Inter-
results	• Discrete Multitone (DMT)	- Pseudo-Random Se-	foronco
 Shannon Capacity 	Implementation		- Canacity
• Why code?	r	IS-95 Radio Interface (1 x EV or IS- 8	256)
Day Three		Walsh Functions	RAKE Receiver
OFDM		Pseudo-Random Sequences	
Orthogonal Frequency Divi-	Codina Techniques	IMT-2000 WCDMA System Radio Int	terface (FDD_TDD) Standards
sion Multiplexing-OFDM-What	• OFDMA (and Scalable	OVSE Functions Gold Codes	• FDGF
is it?	OFDMA) as a multiple access	Cellular Communications-Radio Inte	erface of Classic 2G Systems
• Why do we use OFDM?	technique	Introduction	- CDMA
• DMT Implementation of	• OFDM-BLAST (OFDM-MIMO)	Multiple Access Techniques	• TDMA
OFDM	• OFDM-IJWB-WiMedia Stan-	- FDMA	= GSM (GPRS)
 Adaptive Modulation and 	dard-Radio Interface	- TDMA	- IS-136
Radio Interfaces of a Number of Sys	tems	IIWB-IIItra-Wideband Radio-Impulse	e Radio (Ontional topic)
Radio Interface-	Radio Interface-3G-LTE and	Summary and the Future	
IEEE802.11a,n (Wi-Fi)	4G-LTE (IMT-Advanced)		

Digital Predistortion Techniques For RF Power Amplifier Systems

Summary

Cellular, TV Broadcast, Satellite and Terrestrial point-to-point links all require linear performance from their RF Transmitters. Modern modulations formats such as OFDM and CDMA now demand linearity from their transmitters that are increasingly impossible to achieve without some form of linearisation. Digital Predistortion has increasingly become the preferred linearisation method in the past few years. This course explains the techniques involved and how to implement them.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day One		
Distortion and Non-Linear Mechanisms	in PA's	
Review of Modulation Formats and Perf	ormance Requirements	
• QPSK/QAM families •	ACLR	
– OFDM, CDMA •	PCDE metrics	
• EVM		
Modulation Amplitude Probability Distributions		
 Peak to Average Ratio 		
Introduction to Predistortion		
Theory and Limitations of Predistortion		
Digital Predistortion Architectures; including Multi-carrier		
Bandwidth, Clock Rate and Precision Issues		
LUT and Algorithmic Approach		
Memory Effect Modeling		
• Wiener, Hammerstein, Volt- er	ra Series models	
Adaption Issues		
Power Control		
Day Two		
Introduction to DSP and DPD Hardware		
ADC and DAC Technology		
DSP, FPGA, ASIC Technology		
Practical DPD Architectures		
• RF Architectures		
Linearised Software Development		
• Multi-carrier •	Power Control	

- Adaption
- Power Control
 Creat Factor Dade
- Crest Factor Reduction

- •Describe, measure and analyze non-linear effects in Power Amplifiers
- •Evaluate digital predistortion methods
- •Utilize and implement digital predistortion techniques
- •Design and develop linearized power amplifiers

Target Audience

This course is suitable for a wide range of RF PA designers, DSP Engineers, and system level designers, who are either involved directly with PA design or a system which uses one. Digital hardware and software designers who are involved with RF systems will also find that the course will give them most of the necessary background to design control and DSP functions for the PA stages in a linearised transmitter system.

Linearisation System Components

- Envelope and Phase Detectors
- Gain and Phase Modulators; Vector Modulators

Digital Signal Processing and Wireless Communications

Course 029

Summary

This four-day course provides participants with an in-depth examination of wireless digital communication design strategies. Topics covered include digital modulation, radiowave propagation characteristics, signal detection methods, BER performance improvement and simulation techniques, DSP techniques, and RF/hardware architectures.

Learning Objectives

Upon completing the course the student will be able to:

•Describe the migration path for modulation and demodulation techniques.

•List and describe signal processing building blocks for wireless systems.

techniques

example

time tracking

Technique

ization

Spread spectrum

- Frequency Hoping

- RAKE Receiver

- Direct Sequence CDMA

- uplink and downlink

- PN code coarse and fine

- Receiver block diagram

- WCDMA Introduction

• Orthogonal Frequency Divi-

- Single Carrier and Mul-

sion Multiplexing (OFDM)

tiple Carrier Examples

- Multipath Mitigation

Outline

Day One **Digital Modulation**

• Introduction to some wireless standards • Multiple Access Principles (TDMA, CDMA, FDMA, SDMA, OFDMA)

- Complex envelope representation of signals and systems
- Stochastic theory review
- Digital modulation theory - BPSK, DPSK, QPSK, OQPSK, MSK, GMSK, FSK, DQPSK, p/4- DQPSK, FQPSK, p/4-FQPSK, 16PSK, 16QAM, 64QAM, etc.
 - Pulse shaping filter selection
 - Nonlinear amplification affects (spectral regrowth) - Advanced modulation

Dav Two

Radio Propagation Characterization

- AWGN channel
- Rayleigh multipath fading
- Rician multpath fading
- Delay spread concept (flat
- vs. frequency selective fading)
 - Indoor propagation measurements
 - Outdoor propagation measurements
- Log Normal Shadowing - Governing Principles

- Carrier Frequency Dependency

- Frequency Domain Equal-

- Path Loss - Free Space, Hata, Walfish-
 - Bertoni, etc. - Micro cell measurements
 - Macro cell measurements
- Man made interference
- Adjacent channel interference
 - Co-channel interference

- •Explain methods for mitigating wireless channel impairments. •Perform system simulations ((de)modulation, BER and channel models).
- Predict system performance and evaluate tradeoffs.
- •Describe TDMA, CDMA, 4G LTE and 5G evolution techniques. •Describe design issues for wireless systems, particularly those issues in which transmit and receive implementation affect system performance.

Target Audience

System designers entering or currently working in the field of wireless digital communication will benefit from this comprehensive overview of practical design techniques. An electrical engineering background (or equivalent practical experience) is required. Attending the course, DSP- Understanding Digital Signal Processing (Course 27), is suggested.

son

- Simulating multipath fading - Jakes, LPF-ing, etc. channels **Signal Detection Methods** • BER performance discussion - Differential Detection,
- between theory and practice Coherent detection architec-
- tures - Open Loop, Closed Loop,
- etc.
- Non-coherent detection of p/4-DQPSK, DQPSK & GMSK

Dav Three

Performance Improvement Techniques

- Forward Error Correction – Block. Convolutional. Turbo, Reed-Solomon, Concatenated
- Punctured coding discussion - BER performance discussion
- Interleaver/de-interleaver
- Antenna receiver diversity techniques
- Switching, Equal Gain, Maximal Ratio. Optimal Combinina
- Symbol timing recovery methods
- Equalization techniques - Linear, decision feedback, MLSE

Day Four

Digital Signal Processing

• Automatic frequency control • Automatic gain control

- tions • Equalization coefficient adaptation schemes – LMS, RLS, SMI, etc. • Space Time Equalization - ML perspective - Generalized RAKE (G-RAKE) • Adaptive Antenna Arrays - MMSE and MSINR based cost functions
 - Eigen-spectra investigation

Maximum Likelihood, etc.

• Implementation issues and

design for manufacturability

• BER Performance Compari-

- Various Channel Condi-

- Antenna transmitter diversity techniques
 - Space-time block codes, closed loop - MIMO

- Channel quality estimation techniques
- Concept of dual detection receivers
- Power control loops
 - Uplink and Downlink
- Multipath mitigation
- Transceiver block diagrams – Transmitter issues
- Receiver structures • Transmit power amplifier
- linearization Overview

Computer Simulation Techniques

- Goals of computer simula-
- tions
- Simulation tools - Complex Envelope domain tion methods discussed
- Estimation Methods
 - Monte Carlo, Importance

Sampling, Tail Extrapolation, Semi-Analytic

- A Comparison of the simula-
- - Usage guidelines

DSP - Understanding Digital Signal Processing

Course 027

•Oct 19-Oct 21, 2015 - San Jose, CA / Richard Lyons

Summary

This three-day course is the beginner's best opportunity to efficiently learn DSP. Intuitive, nonmathematical explanations and well-chosen examples develop the student's fundamental understanding of DSP theory. The practical aspects of signal processing techniques are stressed over discrete system theory. Participants will leave with a collection of tricks-of-the-trade used by DSP professionals to make their processing algorithms more efficient. Public course attendees will receive a copy of the book - Understanding Digital Signal Processing by Rick Lyons

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day One	
Discrete Sequences and Systems	
Sequences and their nota- tion	• Processing operational symbols
Periodic Sampling	
 Attasing Sampling low-pass signals 	• Spectral inversion in band-
• Sampling bandpass signals	pass campung
Discrete Fourier Transform (DFT)	
• Understanding the DFT	• Inverse DFT
equation	• DFT leakage
 DFT properties 	
Day Two	
Discrete Fourier Transform (cont'd)	
 Use of window functions 	 DFT processing gain
 DFT results interpretation 	
Fast Fourier Transform (FFT)	
• FFT's relationship to DFT	practice
• Guidelines on using FFTs in	 FFT software availability
Quadrature Signals	
• Math Notation of Quadrature	Signals
Signals	• Quadrature Processing Ap-
• Generating Quadrature	plications
Finite Impulse Response (FIR) Filters	
Introduction	• FIK Filter Design and Analy-
• LORVOLUTION	sis Examples
• nall-band/ Matched/ COMD	 rnase response
ritteis	

•Apply DSP techniques to real-world signal acquisition, spectral analysis, signal filtering, and quadrature processing problems.

•Fluently speak the language of DSP.

•Understand written descriptions (articles, application notes, textbooks) of common, practical DSP techniques.

•Obtain further DSP information using a comprehensive list of references.

Target Audience

Practicing RF hardware engineers and technicians, and computer programmers seeking an understanding of DSP technical theory and algorithms will benefit from this course. The course does not cover the internal architecture of commercial DSP integrated circuits.

Day Three

Infinite Impulse Response (IIR) FiltersIntroductiontal filtersLaplace transforms• Cascade and parallel combi-
nations of digital filtersz-transforms• Comparison of IIR and FIRDesign methods• Comparison of IIR and FIRPitfalls in building IIR digi-filtersAdvanced Sampling Techniques• Quadrature samplingQuadrature sampling• Quadrature sampling with

digital mixing

• Sample Rate Conversion

(decimation & interpolation)

EMC/Shielding/Grounding Techniques for Chip & PCB Layout

Course 140

•Jun 22-Jun 26, 2015 - Web Classroom, WebEx / Allen Podell

Summary

This seminar discusses techniques for identifying the sources of unwanted coupling and radiation, and systematic approaches for their minimization. The class offers approximately one day's worth of material, but is typically offered in five 90-minute sessions (9:00am to 10:30am Pacific time) via web-classroom. Each daily session is a live event but the recording can be made available for up to 7 days to support students requiring a more convenient viewing time. Please contact the office for details at info@besserassociates.com.

This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com

Outline

Day One	
Electomagnetic Compatibility	
 Definition of EMC 	– large scale (test box) and
 Ground definitions 	localized (probes)
 Measuring Radiation 	
Coupling and Radiation	
• Differential and common	vs other lines
mode connections	 Radiation vs. loop area
• Coupling control techniques	 Isolation techniques
• Crosstalk between microstrip	
Shielding	
 Shielding effectiveness 	• Multiple small or fewer large
and wave impedance; shield	holes?
materials	 Transfer impedance as the
• Effects of slots and holes in	effectiveness parameter
shield	
Grounding	

or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.Students will receive a signed Certificate of Completion.

Learning Objectives

Upon completing the course the student will be able to:

- •Define electromagnetic compatibility.
- •Identify sources of coupling and radiation.

•Discuss and simulate the effectiveness of various shielding strategies.

Target Audience

Product and package design engineers of all expertise levels will benefit from this course. A basic engineering background (BSEE or equivalent) is required.

 Current distribution between shield and ground plane
 Coupling through common ground inductance
 Shared vias
 Experimental/Numerical Techniques of Problem Solving
 Case Studies
 Ground plane discontinuities and inductance effects
 Choking off ground currents, filtering the power lines

EMI/EMC and Signal Integrity Boot Camp

Course 249

•Nov 2-Nov 6, 2015 - San Jose, CA / Arturo Mediano

Summary

This special five day workshop covers the methodology of designing and/or troubleshooting an electronic product to minimize the possibility of electromagnetic interference (EMI), signal integrity (SI) and/or Electromagnetic Compatibility (EMC) problems. The basics of designing electronic products with EMI, SI and EMC in mind are introduced in a very understandable and entertaining style.

The course is intended to cover the material from courses #243 (Signal Integrity and EMI Fundamentals) and #230 (EMI/EMC Design and Troubleshooting) as a comprehensive program including examples and simple experiments. The course presents the ways in which an electronic system can generate and/or receive EMI, thereby causing failure to meet EMC regulations. A practical approach with many real world examples, techniques, simulation and hardware tools for EMI/SI design will be explained to minimize costs, production and marketing delays by considering key factors and techniques in the design phase. No prior EMI/SI knowledge is needed but an electrical engineering background (BSEE or equivalent experience) is recommended.

The five day course has a very practical approach through many real world examples, techniques, simulation and hardware demos:

• Fundamentals

- •Basics Of Emi/Emc
- •High Speed/Frequency Effects In Electronic Circuits
- •Components In Rf/Emi/Emc/Si
- •Transmission Lines: Controlling Propagation
- Matching
- •Signal Integrity Parameters
- •Grounding
- Filtering
- Printed Circuit Boards (PCBs)
- Shielding
- Cables
- Transients
- •Diagnostic And Troubleshooting Techniques

DAY 1 is dedicated to the BASICS OF EMI/EMC/SI including coupling mechanisms, why to consider EMC, typical sources and victims, time domain vs. frequency domain, near vs. far field, non ideal components, controlling signal return currents, differential vs. common mode currents, radiation and pickup from loop and dipoles, the "hidden schematic" idea, etc. Scattering parameters (s-parameters) are presented as a very useful set of parameters for experimental characterization and design.

DAY 2 is dedicated to a review of COMPONENTS IN THE HIGH FREQUENCY/speed domain. TRANSMISSION LINES are explained

in a very practical approach as a way to control signal propagation and impedance. Finally, MATCHING techniques are explained with many examples to obtain optimum power transfer and to avoid reflections.

DAY 3 is dedicated to the basics of SIGNAL INTEGRITY in electronic circuits including undesired effects, propagation time and delay, reflections and ringing, crosstalk (near and far) and jitter. Delays. Jitter. After SI basics, a key topic is presented: GROUNDING. Signal ground versus safety ground, grounding strategies, ground loops, techniques to minimize ground impedance are discussed. Finally principles of FILTERING are explained: reflection vs. dissipation, source and load influence, damping resonances and ringing, insertion losses, components and layout in filters, ferrites, decoupling and bypass, mains filters, filter mounting and layout.

DAY 4 covers the DESIGN OF PCBS, component selection and placement, special components for EMI (e.g. spread spectrum clocks), typical problems, layers (how many and distribution), layout, traces, transmission line effects, ground planes, splits in planes, decoupling (how, where, distributed, resonances, etc), crosstalk and examples. We will cover the topic of SHIELDING: influence of material, shielding effectiveness, low frequency magnetic fields, how to destroy a shield, holes and slots, gaskets, evaluation of shields, shield penetrations (how to do).

DAY 5 is dedicated to CABLES from EMI/SI point of view including how they can radiate or pick-up (they are antennas), shielded cables, cable grounding, connectors, types of cables (wires, twisted pairs, coax, shielded cables, ribbon cables, etc) and their influence in the EMC profile of the product. A review of TRANSIENTS and protection (including ESD basics) is presented. Finally simple instrumentation and DIAGNOSTIC AND TROUBLESHOOTING TECHNIQUES for EMI/EMC/SI problems are discussed.

Learning Objectives

Upon completing the course the student will be able to:

•understand the basics and fundamentals of EMI, EMC and SIGNAL INTEGRITY (SI) issues.

•look at high frequency fundamentals of EMI/SI, modeling problems to propose solutions.

•design an electronic equipment to avoid common EMI/EMC/ SI failures.

•use EMI diagnostic and troubleshooting techniques to locate and fix EMI/EMC problems in equipments already finished.
•locate and fix EMI/SI/EMC problems in a product or installation.

•know the way of doing simple prequalification EMC tests.

•reduce time and cost of EMI/SI diagnostic and fixes.

Target Audience

This course will be of interest to:

• design engineers/technicians from the electronics

industry involved in EMI and SIGNAL INTEGRITY (SI) problems. •those interested in a working knowledge of EMI/SI engineering principles and concerned with EMI/SI problems as high speed digital designers, RF designers and PCB layout engineers. •managers responsible for design, production, test and marketing of electronic products.

•marketing engineers who need a general and practical knowledge of the EMI/SI basics.

•design and test engineers/technicians from the electronics industry involved in EMI/EMC/SI problems. Analog, digital, RF,

• Bandwidth

tion

Outline

Fundamentals

Back to Basics

- Electrical signals
- Maxwell vs. Kirchhoff: limits Impedance matching defini-
- of circuit theory
- Spectrum of a signal: time
- domain vs. frequency domain
- Decibel and logarithmic
- scales
- Resonance
- Quality factor (Q) both loaded and unloaded

Basics of EMI/EMC

An introduction to the Electromagnetic Compatibility Problem

- Why EMI affects electronic systems, examples
- EMC: legal requirements
- EMI/EMC classification (1) - radiated vs. conducted
- EMI/EMC classification (2)

High Speed/Frequency Effects in Electronic Circuits How to think in high frequency

- High speed and RF effects - attenuation, gain, loss and distortion
- Skin effect, return current and parasitic effects
- The importance of rise time and fall times (dv/dt and di/ dt)
- Key factors for EMI
- Controlling signal return currents
- Differential vs. common mode currents
- EMI coupling mechanisms

Components in RF/EMI/EMC/SI When a capacitor is an inductor

• Resistors, capacitors and inductors

- Ferrites
- Transformers
- Diodes
- Transistors
- ICs
- Digital and high speed circuits

- Frequency vs. dimensions (size) • Time vs. distance • Scattering parameters (sparameters) • Typical formats and how to measure them - emissions vs. immunity Source and victim and coupling mechanisms • EMI/EMC tests basics - emissions and immunity/ susceptibility • Non ideal components • The "hidden schematic" concept • Antenna basics
 - dipoles and loops
- Antenna resonance
- Antenna gain
- Antenna matching
- Antenna radiation pattern
- Near vs. far field
- Low and high impedance signals and circuits
- "Hidden antennas": radia-
- tion and pickup
- - Key parameters: power, speed and package • es, cables and connections basics • Transmission lines basics • Lumped vs. distributed
 - svstems
 - PCB structures
 - Vias (effects and modeling

mechanical and system engineers and technicians interested in design process to avoid EMC problems.

•those interested in a working knowledge of EMI/EMC engineering principles and concerned with EMC regulations.

•laboratory personnel involved in measurement and troubleshooting of EMC failures.

•managers responsible for design, production, test and marketing of electronic products.

•marketing engineers who need a general and practical knowledge of the EMI/EMC basics.

• Heat sinks

Shielding components

cal transmission lines

and stripline • Reflection coefficient

loss

lines

techniques

• Delays

• Jitter

matching network

• Ground bounce

• Power supply noise

• Common mode impedance

– coax, pairs, microstrip

• Standing Wave Ratio (SWR,

VSWR and ISWR) and Return

• Examples from real world

• rminations to avoid SI/ EMI problems: solutions and

• Using software to design a

• Examples from real world

• Intuitive explanation

- in high frequency)
- Switches
- Transmission Lines

Controlling Propagation. Controlling Impedance

- General description of typi-• Wiring and connecting components
 - limitations for high frequency and high speed systems
- What is a transmission line?
- Motivation: signal propagation
- Modeling a transmission line
- Characteristic impedance
- and velocity of propagation

Matching

Avoiding Reflections. Achieving Maximum Power Transfer • Matching with transmission

- Maximum transfer of power and avoiding reflections
- Matching with LC components
- Matching networks
- L, PI and T networks
- Matching in narrow and
- broadband applications
- Matching with transformers

Signal Integrity Parameters How Your Signal is Destroyed

- What is Signal Integrity (SI)
- in electronic circuits?
- Undesired effects
- Propagation time and delay
- Reflections and ringing
- Inductive vs. capacitive cou-
- High frequency, dv/dt and pling: crosstalk (near and far). di/dt

Grounding

99% of Our Problems Come from the Ground System Design ance

- Signal ground vs. safety
- ground • Ground in high frequency/ speed applications: low impedance path

• Minimizing ground imped-

• Ground strategies (single point, multipoint, and hybrid)

• Common impedance

- Ground loops
- How to Process Your Signal from an Analog Point of View
- Basic ideas

Filtering

- ances (no EMI applications)
- Filters for known imped-
- Basic design techniques

32

with examples

- Filters for EMI/EMC
- How filters work: reflection vs. dissipation
- Insertion losses
- Source and load influence
- Parasitic and location effects Mains filters (differential
- Filtering with ferrites
- Saturation and undesired coupling effects

Printed Circuit Boards (PCBs)

Problems Start in Your PCB Design

- Basic ideas
- Typical problems in PCBs
- Design strategy
- Partitioning and critical zones
- PCB structures (dielectric materials, structures, dissipation factor)
- Choosing the PCB structure: how many layers and distribution
- Power planes design and distribution
- Layout and routing (1, 2 and multilayer) techniques
 - traces
 - microstrip and stripline
 - corners
 - vias
 - controlling impedance

- Decoupling and bypass fun
 - damentals
 - Damping resonances and ringing
 - Three terminal and feed through components

 - mode and common mode)
 - filter mounting and layout

for SI

- transmission line effects and solutions
- Ground planes
- Splits or ground discontinuities in planes (slots)
- Decoupling and bypass (how, where, resonances, etc)
- discrete capacitors vs. embedded techniques in high speed/RF designs
- Crosstalk and guards
- How ground plane layout affects crosstalk
- Mixed signal PCBs (A/D designs)
- Controlling clock waveform
- Clock distribution
- Clock shielding

plays

Gaskets

• Examples from real world

- shield penetrations

• Evaluation of shields

and bad results)

- holes for fans and dis-

• Shields and paint (for good

• transformer stray fields and

- Shielding It's Easy to Destroy Your Shielding System
- Basic ideas
- how shields work: reflection
- vs. absorption
- Influence of material,
- shielding effectiveness

• Low vs. high frequency fields, electric vs. magnetic fields

• How to destroy a shield - holes and slots

Cables

Paths for Your Signals. Hidden Antennas

- Cable fundamentals
- Types of cables - wires, twisted pairs, coax, shielded cables, ribbon cables, etc
- Cable impedance
- Shielded cables and cable grounding
- Connectors
- Cables as antennas for emis-

sions and pickups

real world examples

- Avoiding crosstalk and reflections in cables (layout and
 - terminations) • Avoiding common imped-
 - ance in cables • Reducing emissions and
 - pick-up in cables
 - Examples from real world

Transients

- The World is not Ideal. Are You Ready to Protect Your Circuits?
- Transients from natural and

energy from inductance,

human sources • Typical transient problems

ing activity

tection - filtering, clamping and crowbar

• Methods for transient pro-

ESD basics and high switch-• Firmware and transients

Diagnostic and Troubleshooting Techniques Being Sherlock Holmes to Find the Culprit

- Useful tools and instruments
- voltage probes, current probes, near field probes
- Measuring voltage
- Scope and probe limitations
- Measuring current
- probe response and transfer impedance
- Diagnostic and troubleshooting techniques and hints
- Locating EMI sources with
- near field probes
- Examples from real world

EMI/EMC Design and Troubleshooting Course 230

Summary

This course covers the methodology of designing an electronic product to minimize the possibilities of having problems of electromagnetic interferences (EMI) or Electromagnetic Compatibility (EMC). Useful techniques for troubleshooting an EMI/EMC problem are presented to help in products where problems exist. The basics of designing electronic products with EMI and EMC in mind are introduced in a very understandable and entertained style. The course presents the ways in which an electronic system can generate and/or receive EMI causing failure to meet EMC regulations. A practical approach with many real world examples, techniques, simulation and hardware tools for EMI design will be explained to minimize costs, production and marketing delays considering EMI in the design phase.

First, we cover the BASICS OF EMI/EMC including coupling mechanisms, why to consider EMC, typical sources and victims, time domain vs. frequency domain, near vs. far field, non ideal components, controlling signal return currents, differential vs. common mode currents, radiation and pickup from loop and dipoles, the "hidden schematic" idea, etc.

Second part is dedicated to a key topic: GROUNDING. Signal ground versus safety ground, ground loops, grounding strategies, minimizing ground impedance, etc.

Third, the principles of FILTERING are explained: reflection vs. dissipation, source and load influence, damping resonances and ringing, insertion losses, components and layout in filters, ferrites, decoupling and bypass, mains filters, filter mounting and layout.

Fourth, the main design blocks of a system are explained: printed circuit boards (PCBs), shielding and cabling. We will discuss the DESIGN OF PCBS, component selection and placement, special components for EMI (e.g. spread spectrum clocks), typical problems, layers (how many and distribution), layout, traces, transmission line effects, ground planes, splits in planes, decoupling (how, where, distributed, resonances, etc), crosstalk and examples.

We will cover the topic of SHIELDING: influence of material, shielding effectiveness, low frequency magnetic fields, how to destroy a shield, holes and slots, gaskets, evaluation of shields, shield penetrations (how to do).

spectrum of a signal

• near vs far field

• di/dt and dv/dt

domain

decibels

time domain vs frequency

Outline

Day One

Basics of EMI/EMC

• Why EMI affects electronic systems

- why consider EMC
- EMI/EMC classifications
- typical sources and victims
- coupling mechanisms
- 34

We explain how CABLES can radiate or pick-up (they are antennas), shielded cables, cable grounding, connectors, types of cables (wires, twisted pairs, coax, shielded cables, ribbon cables, etc) and their influence in the EMC profile of the product.

Finally, a review of TRANSIENTS and protection (including ESD basics) is included, firmware and EMI subjects are discussed and DIAGNOSTIC TECHNIQUES AND HINTS (including near field probes) and measurement and tests for EMC are explained.

Learning Objectives

Upon completing the course the student will be able to:

•understand the basics and fundamentals of EMI/EMC issues, •look at the high frequency fundamentals of EMI, modelling the problems to be able to propose solutions,

•locate and fix EMI/EMC problems in a product or installation, •design electronic equipment to avoid common EMI/EMC failures.

•use lab measurements and tools to find or fix typical EMI/ EMC problems,

•perform simple pregualification EMC tests,

•use EMI diagnostic and troubleshooting techniques to locate and fix EMI/EMC problems in existing equipment

•reduce time and cost of EMI/EMC diagnosis and repair.

Target Audience

No prior EMI/EMC knowledge is needed but an electrical engineering background (BSEE or equivalent experience) is recommended.

This course will be of interest to:

•design and test engineers/technicians from the electronics industry involved in EMI/EMC problems. Analog, digital, RF, mechanical and system engineers and technicians interested in design process to avoid EMC problems,

•those interested in a working knowledge of EMI/EMC engineering principles and concerned with EMC regulations,

•laboratory personnel involved in measurement and troubleshooting of EMC failures,

•managers responsible for design, production, test and marketing of electronic products,

•marketing engineers who need a general and practical knowledge of the EMI/EMC basics.

- non ideal components
- frequency vs dimensions in EMT
- controlling signal return currents
- diferential vs common mode done, etc.
- currents

Grounding

- "hidden antennas" radia-
- tion and pickup from loop and dinoles
- the "hidden schematic" idea
- how EMI/EMC tests are

- Signal ground versus safety around
- Ground in high frequency/ speed applications: low impedance path

• Minimizing ground impedance

Filtering

• Filters for EMI/EMC

- how filters work: reflection vs dissipation
- insertion losses
- source and load influence
- parasitic and location ef-
- fects
- filtering with ferrites
- saturation and undesired coupling effects

Day Two

Printed Circuit Boards (PCBs)

- basic ideas
- typical problems in PCBs design strategy
- partitioning and critical zones

• choosing the PCB structure: how many layers and distribution

- power planes design and distribution
- layout and routing (1, 2 and designs) multilayer) techniques
- traces, microstrip and strip-Shielding
- Basic ideas
- how shields work: reflection vs absortion
- Influence of material
- shielding effectiveness
- low vs high frequency fields
- electric vs magnetic fields
- how to destroy a shield
- holes and slots

Day Three

Cables

- Basic ideas for cable fundamentals
- cables in EMI
- transmission lines in EMI
- cable termination
- crosstalk
- how cables can radiate or pick-up
- The control of return current
- Cable impedance

- Common impedance
- Ground strategies (single
- point, multipoint, hybrid) and minimizing ground impedance, etc.
- Ground loops
- decoupling and bypass fun-
- damentals
- damping resonances and rinaina
- three terminal and feed
- through components
- mains filters (differential mode and common mode)
- filter mounting and layout

line, corners, vias, controlling impedance, transmission line effects and solutions ground planes

- splits or ground discontinuities in planes (slots)
- decoupling and bypass (how, where, resonances, etc)
- crosstalk and guards
- mixed signal PCBs (A/D
- clocks and critical signals
- Examples from real world
- gaskets
- evaluation of shields
- shield penetrations (how to do)
- holes for fans and displays
- Shields and paint (for good and bad results)
- Transformer stray fields and real world examples
- Shielded cables
- cable grounding
- Types of cables
 - wires, twisted pairs, coax, shielded cables, ribbon cables. etc
- Connectors
- Reducing emissions from
- cables
- Examples from real world

Transients

- Transients from natural and
- human sources
- Typical transient problems energy from inductance, ESD basics and high switching activity
- **Diagnostic and Troubleshooting** • Diagnostic and troubleshoot-

• Methods for transient pro-

• Firmware and transients

- filtering, clamping and

tection

crowbar

- ing techniques and hints
- Locating EMI sources with
- near field probes
- Typical fast and low cost
- solutions
- Measurement and tests for EMC
- Examples from real world

Filters and Multiplexers for Military Systems Course 246

Summary

Filters are one of the fundamental building blocks used in integrated microwave assemblies, along with amplifiers, oscillators, mixers and switches. Depending on the frequency range and bandwidth we might use printed distributed filters, printed pseudo lumped filters, chip and wire lumped element filters and in some cases, cavity combline filters. Switched filter banks are common and sophisticated multiplexers are used in some systems.

Many broadband microwave down converters and up converters are built using thin-film technology on ceramic substrates. The substrates are placed in a channelized housing which isolates the various signal paths from each other. The front end, band select filters may be as broad as octave bandwidth, while the IF filters are typically much narrower. Filters used to clean up harmonics in the LO chain may be narrower still. It the past decade there has been a trend to use more printed circuit board technology when possible and even use commercial off the shelf (COTS) parts in military systems.

EM simulation is also an essential component of filter design for military systems. Distributed filters in a cut-off waveguide channel excite, and couple to, evanescent modes in the channel. The net result is the measured bandwidth of the filter is radically different with the cover on and the cover off. If the channel dimensions change, the filter must be redesigned. A design procedure that incorporates EM simulation is needed to include all the filter layout details and the coupling of the filter layout to the waveguide channel.

This course is devoted to the fundamentals of practical filter design for RF and microwave systems. The core material is a universal procedure for narrow band filter design that can be applied to virtually any filter technology or topology. The procedure is rooted in Dishal's method with powerful extensions that include the port tuning concept, equal ripple optimization techniques, and efficient EM simulation. All the techniques presented can be implemented using commercially available CAD tools.

Broader band filters generally require a synthesized starting point for our design. But once we have a reasonable starting point we apply the same port tuning techniques to rapidly fine tune the design. The key in both the narrow band and the broadband cases is to minimize the number of full EM solutions that we run. The port tunings we apply in our circuit simulator always indicate the direction and relative magnitude of the corrections that need to be made to the filter geometry. Example filter designs that cover a broad range of military applications will be presented with measured data and error analysis. The instructor will choose examples to develop based on the interests of the class. DAY ONE We will present the briefest possible introduction to basic filter design concepts. Starting with lowpass prototypes, we will touch on Chebyshev and elliptic prototypes and finding prototype element values. Next we will turn to a brief overview of the most common filter design techniques. Topics will include synthesis from an insertion or return loss function, the coupling matrix approach, and synthesis by optimization. The use of general purpose linear simulators for equal-ripple optimization will also be discussed. Finally, we will introduce the port tuning concept. DAY TWO

Our approach to narrow band filter design starts with Dishal's method and moves a step beyond with port tuning of a full EM model. The port tuned model is a virtual prototype that can be diagnosed and optimized before any hardware is built. Modern TEM filters often employ cascade triplets and quads to realize transmission zeros in the stopband or flatten group delay in the passband. These filters can also be designed using our approach. At some point, practical procedures are needed to measure unloaded Q, external Q, and coupling coefficients. Systematic methods for tuning filters are also needed. All of these methods and procedures can be applied to actual hardware or to an EM simulation of the hardware. DAY THREE

Filters in planar form can be built using several different topologies and technologies. Various single and multilayer ceramic and soft substrate (PCB) technologies are available to the filter designer. We will cover the more common distributed topologies including edge-coupled, hairpin, and interdigital. More recent coupled and cross-coupled loop topologies will also be presented. At lower microwave frequencies a pseudolumped approach using printed inductors and capacitors is more space efficient. Lowpass, elliptic lowpass, and bandpass filters using this approach will be presented. Strategies for efficient design and EM simulation will be discussed for all the topologies presented.

Learning Objectives

Upon completing the course the student will be able to:

•understand fundamentals of practical filter design for RF and microwave systems

•apply Dishal's method - with powerful extensions that include the port tuning concept, equal ripple optimization techniques, and efficient EM simulation

•extract data from hardware and from EM simulations

•design Planar Filters

Target Audience

The course material is suitable for filter designers, designers of other components, systems engineers, and technical managers.
Outline

Day One

Introduction to Filter Design, Optimization, and Port Tuning • Coupling Matrix Approach

- Basic Filter Concepts
- Chebyshev and Elliptic Pro-
- totypes
- Synthesis by Optimization
 - Equal-ripple Optimization • The Port Tuning Concept

• Coupling Coefficients

• Filter Tuning

• Synthesis From Insertion Loss Functions

Day Two

Narrow Band Filter Design and EM Simulation

- Narrow Band Filter Design • External Q
- Cross-Coupled Filters
- EM Filter Prototypes
- Unloaded Q

Day Three

- **Designing Planar Filters** • Planar Filters
- Edge-coupled, Hairpin, and
- Interdigital
- Coupled and Cross-coupled Loops
- Pseudo-lumped Lowpass and Bandpass
- Strategies for Design and EM Simulation

Frequency Synthesis and Phase-Locked Loop Design

Course 052

Summary

This three-day course provides both the theoretical and practical knowledge necessary to design frequency synthesis circuits and systems using phase-locked loops and related technologies.

Learning Objectives

Upon completing the course the student will be able to:

• Describe the theory of operation for PLLs and related components.

Analyze how PLL performance impacts system performance.Develop and explain designs of PLL components including

Outline

Day One	
 History from test and mea- surement perspective Direct and indirect frequen- PLLs: Basic Model and Analysis 	cy synthesizers • Performance requirements
 Laplace transfer function and linear model Loop types and properties Loop filters Open and closed loop gain Bode plots phase and gain margin stability Calculation of transfer functions and time domain response Day Two Phase Noise and Spurs 	 Frequency modulation (FM) Acquisition, lock and hold in range, small signal switch- ing speed Sampling and Z transforms Nonlinear modeling/simula- tion Analyses and simulations of all PLL concepts using Mathcad and PSPICE
 Phase noise types and graphs Effects on system perfor- mance Modeling PLL noise per- Phase Detectors 	formance using Mathcad and PSPICE • Spur types, reduction meth- ods
 Mixer Sample and hold, microwave samplers Digital and interface to Dividers 	analog circuitry • Commercial product ex- amples
 Pre-scalers: silicon, GaAs, and dual and multiple modu- lus Pulse swallowing counters in 	conjunction with dual modulus pre-scalersNoise, limitations, other issues

mixers, phase detectors, oscillators, and dividers.

•Examine limitations of real world components, design tradeoffs and their effect on PLL performance.

•Develop and explain more advanced frequency synthesis systems designs.

•Test PLL circuits and systems to verify design integrity. Target Audience

Engineers designing or specifying PLL frequency synthesis circuits and systems will benefit from this course. Prerequisites include basic digital circuit design, solid analog design skills including transfer functions, basic control and communication theories, and practical experience using PSPICE and/or MATHCAD, and modern RF/analog test equipment and construction methods.

Oscillators • Feedback and negative resislations tance models Crystals and crystal oscilla- Resonator types tors Modeling and predicting Oscillator design using phase noise from crystal oscil-**PSPICE** and Compact **Day Three** Fractional N Loops Implementation techniques • Analog and digital methods • Fractional N beyond loop for fixing fractional N spurs bandwidth **Direct Digital Synthesis (DDS)** • Theory, errors and limita- Commercial products • Incorporating DDS in PLLs tions More Complex Loops Heterodyning and mixing • Single sideband mixer/frac-• Reducing oscillator phase tional N loop • Multiple (sum and step) noise using delay line methods Increasing frequency range loops Testing • Phase noise Switching speed

Loop dynamics

• Real world test data

Fundamentals of LTE - OFDM, WCDMA Course 223

Summary

Understanding the evolution of wireless data transmission from 3G to 4G technologies is critical to today's commercial component and system vendors. This comprehensive three day program covers the key technologies in a clear and concise manner.

The course begins by covering fundamental digital signal concepts. We look at the relationship between complex digital signals and the hardware (specifically complex envelope, quadrature modulators and demodulators). This will also be used to provide insight into the modulation schemes chosen by these standards. Various reasons why certain decisions have been made by the 3GPP standards body will be provided. A practical pulse shaping filter discussion will be presented. Channel impairments such as noise (AWGN) and multipath fading are introduced. Forward error-control coding (convolutional, Turbo, etc) and the Viterbi decoder will be discussed in detail, as well as functionality partitioning between hardware and software.

Moving on, we will present the components of a WCDMA system. We will start with the protocol overview and the where certain functions are located (and why) in the network. We discuss the purpose of the physical channels and the issues to be aware of when designing a RAKE receiver to demodulate them. We then point out the issues related to WCDMA to support packet data and introduce HSDPA & HSUPA. A RAKE receiver will be discussed and specific implementation details such as ADC location, dedicated HW and SW control will be provided. PN code sequences will be discussed as well as the method used to shift the sequence. A block diagram of the NodeB transceiver will be provided to show location of ADC, transport channel multiplexing, closed loop operations, etc. A discussion on why certain choices were made in the implementation partitioning.

Outline

Day One

/	
Digital Modulation Overview	
 Complex envelope representation of signals and systems Relationship to HW components Impact of PA non-linearity (spectral reqrowth) Impact of PA non-linearity (spectral reqrowth) Gain & Phase imbalance Radio Propagation Characterization 	 Digital modulation overview BPSK, QPSK, 16QAM & 64QAM Block diagrams Pulse shaping filter selection (Nyquist and Raised Cosine filtering) System Metrics: BER, SNR, Eb/No definitions
AWGN channelRayleigh/Rician multipath	fading – Background & Practical

Finally, we discuss the components of the LTE system. We will start with the protocol overview and the where certain functions are located (and why) in the network. We discuss the purpose of the physical channels and the issues to be aware of when designing a receiver. The OFDM transceiver will be discussed as well as options needed to be implemented to support the various BWs defined. We will discuss the implementation partitioning to support link adaptation. Antenna diversity details around the LTE standard will be provided to introduce the various modes of operation that need to be supported.

Learning Objectives

Upon completing the course the student will be able to:

•understand multipath fading issues when deploying WCDMA and LTE.

•describe receive antenna diversity techniques and issues surrounding their implementation.

•compare the implementation complexity of TDMA, CDMA and OFDMA as the supported data rates increase.

•Know the issues and obstacles related to multiple access schemes and how to overcome them.

 address issues pertaining to timing tracking and channel estimation.

•describe the expected UE behavior with regards to cell search. •address the timing requirements for closed loop power control.

•describe various LTE system scenarios such as random access and link adaptation.

Target Audience

Engineers and technical managers who need a technical understanding of third and fourth generation cellular data transmission techniques will benefit from this course. Knowledge of fundamental signal processing concepts (Fourier transform, etc.) is assumed.

erview		 explanations Delay spread concept (flat 	• Delay spread & coherence bandwidth (outdoor & indoor)
e represen- Id systems <i>o HW com-</i>	 Digital modulation overview BPSK, QPSK, 16QAM & 64QAM Block diagrams 	vs. frequency selective fading) – Indoor & Outdoor propa- gation measurements Performance Improvement Techniqu	• Updated 3GPP Reference Channel Models
non-lin- reqrowth) n-linearity th) imbalance aracterization	 Pulse shaping filter selection (Nyquist and Raised Cosine filtering) System Metrics: BER, SNR, Eb/No definitions 	 Forward Error Correction Convolutional (Viterbi Algorithm, Punctured Coding) Turbo (Encoder and Decoder) Interleaver/de-interleaver 	 Antenna receiver diversity techniques Switching, Equal Gain, Maximal Ratio, Optimal Combining Theoretical SNR improve-
multipath	fading – Background & Practical	 advantages & disadvan- tages Performance comparisons 	ment & BER Performance – Issues to be aware of when implementing spatial

diversity

Multipath Mitigation Techniques

• Explain how different stan-	– TDMA vs. CDMA vs.
dards resolve multipaths	OFDMA solutions
Day Two	
3GPP WCDMA System Components	(Building Blocks)
• System Goals (latency,	• High Speed Uplink Packet
throughput, etc.)	Access (HSUPA)
• 3GPP Release Overview (Re-	– HSUPA Physical Channels
lease 99 to Release 9 features)	• PN sequences discussion: m
• WCDMA Signaling Channels	sequences, gold codes, OVSF
(UL and DL)	NodeB Transceiver block
– Logical Channels	diagram
– Physical Channels	– Spreader & despreader,
WCDMA Protocol Overview	etc.
– Layer1-PHY, Layer2-MAC,	• RAKE receiver Overall Block
Layer3-RLC functions	Diagram Discussion
• High Speed Downlink Packet	– RAKE Receiver Signal
Access (HSDPA)	Processing
– HSDPA Physical Channels	5
3GPP WCDMA System Scenarios	
• Echo profile manager	95, CDMA2000 and WCDMA
(searcher)	Paging Protocols
– Discussion on sample rate	– Power Consumption con-
changes	clusion
• PN time tracking & acquisi-	 Call Flow Diagrams
tion	– Mobile Originated (MO)
 SIR power control 	Call
– Inner, Outer and Closed	– Mobile Terminated (MT)
Loop	Call
– UL and DL Closed Loop	• Network Architecture (No-
Comparison	deB, Radio Network Controller,
• Pilot symbol aided coherent	Core Network)
detection for Channel estima-	– Partitioning of Protocol
tion	Stack Across Network
 What is the timing im- 	 Security Architecture
pact ?	– Ciphering Examples
 Modulation (HPSK) 	 Integrity Protection
• Cell search & Handoffs	– Confidentiality
– Expected UE behavior	- WCDMA & HSDPA ex-
• Paging Discussion	amples
– Comparison of EIA/TIA-	

Day Three

LTE System Components (Building Blocks) • System Goals (latency, throughput, etc.) - Discussion on trend toward IP services • LTE Signaling Channels (UL and DL) - Logical Channels - Physical Channels • Network Architecture (E-UTRAN, EPC) - Element Interfaces • Protocol Architecture (RRC, RLC, MAC) - Partitioning of Protocol Stack across Network • OFDM Principles and details for LTE - Transmission & modulation (subcarrier, IFFT, S/P, etc.) - Sub-carrier discussion - Reception and Demodulation (FFT, P/S, etc.) - Purpose and values of Cyclic Prefix (CP) - OFDM Receiver block diagrams • FDD & TDD Modes

GaN Power Amplifiers

Course 228

•Jun 2-Jun 4, 2015 - Web Classroom, WebEx / Ali Darwish

Summarv

There are a number of semiconductor technologies being used for power amplifier design. This course introduces students to the GaN transistor, its properties, various structures, discrete and MMIC devices. The properties of GaN will be presented showing the advantage of these devices over other materials for power amplifier applications. Material will be presented on GaN HEMT transistors, geometries, semiconductor processes and structures with associated breakdown voltages, power capability, gain, efficiency, and frequency performance. Guidelines for reliable operation will be presented considering device junction temperature including thermal management techniques. MMIC matching and biasing elements will be shown. The nonlinear models of GaN HEMT devices necessary for the Computer Aided Design (CAD) of power amplifiers will be presented. Design considerations for both constant amplitude envelope signals as well as the non-constant amplitude envelope signals will be presented. Design procedures will be shown for various GaN PA examples including different classes of operation as well as the popular Doherty PA. The class offers approximately one day's worth of material, but is typically offered in three 2-hour sessions (9:00am to 11:00am Pacific time) via web-classroom. Each daily session is a live event but the recording can be made available for up to 7 days to support students requiring a more convenient viewing time. Please contact the office for details at info@besserassociates.com..

This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.Students will receive a signed Certificate of Completion.

Learning Objectives

Upon completing the course the student will be able to:

•Understand GaN semiconductor technology, its properties, and its advantage over other materials

•Learn how the GaN FET geometry and semiconductor processing affect the PA breakdown voltages, gain, power capability, efficiency, and frequency performance.

•Choose the correct nonlinear model to design the PA

•Understand design considerations for constant amplitude envelope signals as well as non-constant envelop amplitude signals

•Learn design procedures for GaN PA various classes of operation and the Doherty PA using modern simulators.

Target Audience

Semiconductor, component, and system designers including engineering managers will benefit from this course. RF/ wireless engineers who want to understand the performance enhancements of GaN PAs. Application and product engineers supporting customers in areas relating to GaN PAs. PA circuit designers who wish to learn design techniques for nonlinear GaN PAs. Basic knowledge of microwave measurements and transmission line (Smith Chart) theory is assumed.

Outline

The following topics are spread over three 2-hour sessions GaN Semiconductor and GaN HEMT PA Capabilities

 power capability reliability
• thermal management tech-
niques
• gain
 efficiency
 frequency performance
• MMIC matching and biasing elements
• nonlinear GaN HEMT models
envelop (CDMA, WCDMS, LTE) design considerations and

• non-constant amplitude

GaN FET PA Design Examples

• PA design for various classes of operation as well as the popular Doherty amplifier using the latest nonlinear CAD circuit programs

Hardware DSP: A guide to building DSP Circuits in FPGAs Course 244

Course 244

Summary

This three day course covers implementation techniques for building DSP circuits in field programmable gate arrays (FP-GAs). As the conversion rates increase for both analog to digital converters (ADCs) and digital to analog converters (DACs) the point of digitization of the analog signal gets closer to the antenna. However the resultant high data rates are often too much for a typical DSP processor and so the DSP algorithms needed to process the high data rate must be built directly in hardware. FPGAs are a cost effective choice for this task. Where ever possible, pictures, diagrams, and videos are used to illustrate the operations of DSP algorithms such as the Discrete Fourier Transform, convolution, polyphase decomposition, etc., thus providing more deeper insight to those who learn best through pictures.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day 1

DSP Theory Review seen Through a Hardware DSP Prism

• Discrete Time Signals domain, time domain - Why sinusoids ? • Number Representation - Trigonometry - the math-- Fixed point, floating point ematics of sinusoids - Quantization effects • Discrete Time Systems -• Architecting Algorithms for operations on signals parallel processing - Convolution, Correlation - Introduction To Systolic • Alternate Views of Signals Array Processing - Process replication, proand Systems - *Z* transform, frequency cess partitioning Day 2 Functions needed for building DSP Systems • Phase calculation via the interpolation CORDIC algorithm - Parallel filters for high • Digital oscillators built via data rates Direct Digital Synthesis (DDS) • Fast Fourier Transforms • Filter structures (FFTs) Algorithms - Cooley_Tukey -a powers of Single Rate - distributed 2 transform

- Winograd -a non-powers

of 2 transform

arithmetic ,systolic, transposed FIR – Multi-rate - Polyphase decomposition, CIC, Farrow •Understand the architectural trade-offs between size and throughput for DSP algorithms built directly in hardware

•Apply the concepts and techniques learned in the course to real world applications in disciplines such as digital communications and sensor processing

•Know how to use and configure the DSP IP cores provided by FPGA vendors

•Judge which FPGA devices are best suited for their application

Target Audience

Hardware/FPGA engineers who need to build DSP circuits, software DSP engineers who need to understand hardware DSP concepts, DSP system engineers who need to understand implementation choices. The course assumes attendees have been exposed to DSP theory and concepts but now need to reduce that theory to practice. Prerequisite: Course 027: DSP -Understanding Digital Signal Processing or equivalent.

Day 3

Building Systems with our Hardware DSP function

- Channelizers
- Basics of beamforming
- Basic Digital Communica-

tions Processing

- Up/down conversion
- Waveform Modulation
- Carrier Synchronization
- Basic Radar Processing
 - Pulse Compression
 - Doppler
 - Fast Convolution

How to Speak RF (and Wireless) Course 187

Summary

This 2 day course will explain the basic principles of RF and wireless telecommunications equipment so that professionals in non-technical jobs can understand what their technical colleagues are talking about. The course begins with a discussion of how voice, video and data communication systems work. Then the eight important vocabulary terms of RF are carefully explained. The key components that make up any RF communication system are then described, and illustrated with hardware examples. The function of base stations and access points are then explained. Multiple access techniques, which allow the maximum number of customers to use a particular system are defined. The cell phone industry, from its start, to its present capability, and on into the future is described. Finally high speed data systems, like 802.11 are explained.

Outline

outinic	
Day One	
How Telecommunication Systems W	/ork
• Telecom signals in time and	signals
frequency	 Data signals
 Voice signals 	 Compression
 Video signals 	 Error correction
 Digitizing voice and video 	
The RF concepts you need	
• Frequency	 dB and dBm made simple
• Wavelength	• Phase
 The electromagnetic spec- 	 Impedance
trum	 propagation and multipath
• RF power	fading
RF communication systems	
 Block diagram 	 Functions of each RF part
Transmission lines	
 Waveguide and coax 	 Mismatches
 Microstrip 	
How each part in the block diagram	works
 Phase locked oscillator 	• Filter
 Modulator 	 Low Noise Amplifier
 Upconverter 	• Mixer
 Power amplifier 	 RF integrated circuits
 Antennas 	
Day Two	
Base stations and access points	
Multiple access - How the maximum	n number of users can be served
• FDMA, TDMA	 OFDM, OFDMA
• CDMA	• Packet data

Attend this course, and the language of RF and Wireless will no longer be a mystery.

Learning Objectives

Upon completing the course the student will be able to:

- •Speak the vocabulary of RF and Wireless equipment.
- •Understand what their technical colleagues are talking about.
- •Communicate effectively about RF and wireless equipment

Target Audience

Professionals in management, finance, public relations, marketing, personnel, and other non-technical specialties who need to understand their company's technical goals, project status, and what their technical counterparts are doing. Prerequisites:

Absolutely none, except the desire to learn what RF and wireless is all about.

Cell phone evolution

•	Then: 1G analog	g and 2G	data capability	
di	igital		• LTE	
•	3G with voice, vi	ideo and		
SI	hort range, high dat	a rate systems		
•	802.11			

Introduction to Data Converters: ADC & DAC

Course 239

Summary

Data converters are one of the most fundamental building blocks in mixed-signal systems. This course will introduce the fundamental principles of Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC) including the most common Nyquist-rate and oversampling architectures. The course will cover basic system and circuit architectures, performance metrics, data converter characterization, performance limitations, practical implementations, and design procedures.

Learning Objectives

Upon completing the course the student will be able to:

•Understand data converters system specifications, perfor-

Outline

Day One	
System Level Concepts	
 Basic definitions 	 Data converters tasks
Performance Metrics of Data Conve	rters
 Resolution 	• Dynamic Range
• SNR	• ENOB
• SNDR	• SFDR
• THD	
Performance Limitations	
 Tripping Points 	 Absolute and Relative Ac-
 Offset Errors 	curacy
• Gain Errors	 Monotonicity Errors
• INL Errors	 Timing Errors
• DNL Errors	
Introduction to FFT	
• spectral characterization of	data converters
Flash ADC topology	
• basic concepts	• practical performance limi-
• design procedure	tations and non-idealities
• circuit implementation	
Day Iwo	
Continuation of flash ADC topology	
• design procedure and circuit	performance limitations and
implementation • practical	nonfidealities
Nyquist?rate ADC Architectures	
• Sub?Ranging ADC	Integrating ADC
• Pipelined ADC• SAR ADC•	
Day Ihree	
Oversampling ADC Architectures (Si	gma?Deita)
• Une: Dit Converters	 nigner order noise-shaping
 Noise Shaping 	 pasic circuit implementation

mance parameters and data sheets, data converters characterization, and spectral analysis.

•Understand performance tradeoffs (power, area, sampling rate, resolution, etc

•Understand basic circuit topologies and circuit design procedures of the most common Nyquist-rate and oversampling data converters

Target Audience

Analog design engineers, researchers and graduate students who are interested in data converter design, and mixed-signal SoC designers. In addition, product, test, and application engineers will learn about testing and characterization of data converters and their limitation. Course 027: DSP - Understanding Digital Signal Processing or equivalent is recommended.

Nyquist?rate DAC Architectures

•	Resistor	String	DAC	
	100010101	oung	DIIO	

• Binary?Scaled Resistors DAC

• Current?Mode Binary?Scaled

Introduction to FFT and spectral characterization of data converters

DACs

• Thermometer?Code DACs

Introduction to Impedance Matching Course 229

Summary

The need for impedance matching is rooted in basic AC circuit analysis principles. In basic terms, maximum power transfer occurs when the current and voltage are in phase. This workshop examines the ins and outs of delivering the most power possible to an RF load. Q factor and its effect on matching network bandwidth are also described.

The course runs from 9:00 AM to 11:00 AM Pacific time. A recording of the course will be available for one week for those who are unable to attend the live event, and questions will be answered both during the session and via email after the session has ended. This course is intended for registered individual students only. Please contact us for group rates at info@

Outline

Session One

Impedance Matching Fundamentals

- Electrical energy transfer. resistors, inductors and capacitors.
- AC voltage and current in

besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the basis of impedance matching and its importance in energy transfer.

- •Understand complex impedances
- Match unequal terminations

•Optimize matching networks for wider bandwidth **Target Audience**

Engineers and technicians who are new to RF and need to work with matching networks.

- Complex numbers and com-
- plex arithmetic.
- Impedance and admittance.
- Conjugate match.
- Q Factor.

- Impedance matching with simple parasitics.
- Impdedance matching be-
- tween unequal terminations.
- Improving bandwidth.

Introduction to Radar Course 253

Summary

This seminar provides an introduction tutorial on basic Radar design, techniques and operational capabilities. It covers a definition of radar, basic radar fundamentals, types of radars, derivation of the radar equation in multiple forms, radar range equation and range ambiguity, minimal detectable range, signal and noise analysis, MDS, clutter, detection process, probability of detection and false alarm, range accuracy and resolution, range and bearing determinations, radar cross section, displays PPI, Moving Target Indicator MTI, blind speeds, multiple pulse MTI radar, Doppler, multipath, basic radar operation, radar directional antennas including AESAs, transmitters, receivers, frequency and bandwidth advantages and applications, group delay, dynamic range, AGC/STC, frequency diversity, radar path budget, PRI/PRF, , two-way channel losses including free-space loss and examples, and radar pulse shaping. Also included are techniques to use radar systems for communications using PPM and other modulation. In addition, direction finding DF using radar is discussed along with SAT-COM radars and frequencies. In addition, several examples and step processes are discussed to determine the optimal solutions and tradeoffs between the many cognitive capabilities.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the concepts and definition of basic radar design.

Outline Day 1

Dav 2

ucod Definition and history of radar Pulse radar including modulation Basic two-way channel analysis Develop the Radar equation and its derivatives and show how it is use Range determination, calculation, ambiguities, resolution, and minimum detectable range Bearing determination including accuracy and resolution Displays and how they indicate the targets both PPI and A-scope **Basic radar operation** Directional antenna gain, types including AESAs, reflector configurations, and examples Antenna capabilities including electronic steerable arrays. Frequency diversity radars and antennas Radar transmitter and hardware designs and configurations Radar Pulse shaping, advantages and disadvantages, types of shaping

•Become familiar with techniques to improve radar performance in the presence of clutter

•Learn how to develop the radar equation, and all of its derivatives.

•Evaluate the Probability of Detect compared to the Probability of False Alarm and how to determine the threshold level including tradeoffs.

•Learn how to use radar to provide long distance communications for broadcast messages LOS connections.

•Discover how to use multiple radars in a combined system to mitigate blind speeds and other anomalies.

•Learn how Moving Target Indicator MTI radar eliminates large stationary targets and detect small moving targets. Also learn what system problems that are inherent in radars and learn how to mitigate or reduce the problems.

•Understand the hardware that makes up a radar system and learn to determine the optimal solutions.

•Learn how radar can be used for a 3-dimensional direction finding system with two separate radar receive antennas. **Target Audience**

This course will be of interest to RF, analog, digital, systems and software engineers and managers who are interested in learning more about the basic functionality of radar and learning how to evaluate and improve the detection process. This applies to both those that want to gain an understanding of basic radar and those that are experienced engineers that want a better understanding of radar.

Ľ	1560
F	Radar receiver and hardware designs and configurations
F	Probability of Detection and False Alarms
2	Determining the frequency of operation, advantage and disadvantages and their applications
[Day 3
(t	Group Delay definitions and mitigations, Aliasing definitions and mitiga- ions
ľ	Dynamic Range and AGC with control theory to guarantee stability and now to measure it
k	Noving Target Indicator MTI design and improvements and Multiple bulse radars to mitigate blind speeds
0	Doppler effects, Doppler and Tracking radars, Pulse Theory
ł	low to use Radars for communications using pulse position modula- ions and others
t	ypes of Multipath, techniques to reduce multipath for radar applica- ions
S	Satellite Radar, frequencies, and types of satellites, antennas and feeds
T	hree-dimensional radar interferometer for direction finding

Introduction to Wireless Communication Systems

Summary

This seminar provides an overall view of wireless communications including commercial and military applications for Program Managers, Engineering Managers, and others that do not have a technical engineering background. This is a very informative class at a high level so managers that are involved or going to be involved with Wireless Communications can understand at a high level what the engineers and programs are developing. It includes high level descriptions, enough detail to understand the concepts with little math or analysis involved. This is focus towards spread spectrum systems, which is nearly all of communications today. It covers a wide range of data link communication techniques, including tradeoffs of the system including cost reduction and size reduction methods using a budget to determine what is needed for the wireless system. It discusses the advantages of digital systems that are used extensively today, receivers and transmitters, digital modulation and demodulation techniques of phaseshift keyed and frequency hopped spread spectrum systems using easy-to-understand phase diagrams. It also addresses gain control, high level probability, jamming reduction method using various adaptive processes, error detection and correction, global positioning systems (GPS) data link, and satellite communications. The course discusses broadband communications including Link 16, JTRS, military radios, and networking. It also includes commercial applications such as 3G, 4G, WiFi, WiMax, LTE and home networking. Various techniques and designs are evaluated for modulating and sending/receiving digital data. Thus the student gains a firm understanding of the processes needed to effectively understand wireless data link communication systems which is vital to their jobs.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the tradeoffs in a Wireless Communications system using a simple tool called a Link Budget. This includes signal and noise evaluations.

•Understand the advantages between digital communications and analog communications. This includes different ways to modulate the carrier frequency such as Phase Shift Keying (BPSK, QPSK, etc), and also spread spectrum and its advantage to prevent inference from others.

•Learn the principles to separate users from each other by using time, frequency, code, and others.

•Learn how cell phones and other wireless communications handle near/far problems, adjacent channel interference, automatic gain control and dynamic range.

•Understand basic concepts such as Image Frequency, Group Delay (important with Digital Communications), Aliasing, Feedback which is necessary to understand digital communications.

•Learn about pulse position modulation and how to use it in burst communications. Examine the advantages and disadvantages of Absolute vs Differential.

•Understand the advantages and disadvantages of Coherent vs Differential that can be applied to all types of digital modulation.

•Learn about how to retrieve the data by eliminating the carrier and the spread spectrum code to achieve the desired data. •Examine simple concepts to show the probability of errors in the system, and to detect and correct the errors for more reliable communications.

•Learn to minimize inter-system interference that causes unreliable detection of the data.

•Learn about the tradeoffs between high data rate modulations and lower more robust modulations.

•Examine difference types of Multi-path and how it affects digital communications and radar signals. Also show how antenna diversity can improve the signal against multipath.

•Learn techniques on how to remove unwanted signals from interfering with your signal.

•Understand the basic concepts for GPS and how it has become a commodity in the civilian community.

•Learn how satellites are used in providing digital communications. Also how older satellites are being used for unique applications. In addition, learn what satellites are available and what type of communications they provide.

•Examine communication techniques including 3G, 4G, Bluetooth, WiFi, WiMax, and LTE.

•Discover how multiple antennas are being used to increase the data rates and improve the signal quality using MIMO and others.

•Learn about different types of Networks that tie the communications together.

•Discuss Military radios including, Legacy Radios, JTRS, and Link 16.

Target Audience

This course will be of interest to Program Managers, Engineering Managers, Business and Finance Managers and others who are looking to understand both military and commercial Wireless Communications systems at a high level. This includes anyone wishing to be more effecting in dealing with customers, staff, and those working on these programs. It is also an excellent refresher course for those engineers that want to be more involved with Digital Communications in their careers.

Outline Day One

Wireless Tradeoffs in Digital Communications Using a Link Budget

• Understand the tradeoffs in a Wireless Communications

 Learn the principles to separate users from each other by using time, frequency, codes, and others. Learn how cell phones and other wireless communications handle near/far problems, adjacent channel interference, automatic gain control and Modulation Techniques used to Impression 1000 and 10000 and 1000 and 10000 and 10000 and 1000 and 1000 and 1000 and 1000 and 10000 a	dynamic range. • Understand basic concepts such as Image Frequency, Group Delay (important with Digital Communications), Aliasing, Feedback which is necessary to understand digi- tal communications. rove Communications	 ing MIMO and others. Learn about different of Networks that tie the munications together. Discuss Military radios cluding, Legacy Radios, and Link 16.
• Learn about pulse position	• Understand the advantages	
 modulation and how to use it in burst communications. Examine the advantages and disadvantages of Absolute vs Differential. 	and disadvantages of Coher- ent vs Differential that can be applied to all types of digital modulation.	
Receiving the Signal and Detecting a	and Correction Errors	
• Learn about how to retrieve	in the system, and to detect	
the data by eliminating the	and correct the errors for more	
carrier and the spread spec-	reliable communications.	
trum code to achieve the	• Learn to minimize inter-	
desired data	system interference that	
• Examine simple concepts to	causes unreliable detection of	
show the probability of errors	the data.	
Loarn about the tradeoffs	lations and lower more reduct	
between high data rate modu-	modulations	
Multipath. Antenna Diversity. and Re	moving Undesired Signals	
• Examine difference types of	can improve the signal against	
Multi-path and how it affects	multipath	
digital communications and	• Learn techniques on how to	
radar signals.	remove unwanted signals from	
• Show how antenna diversity	interfering with your signal.	
Satellite Communications and GPS	Also have	
cepts for GPS and how it has become a commodity in the civilian community.	older satellites are being used for unique applications. In addition, learn what satellites	
• Learn how satellites are	are available and what type of	
used in providing digital	communications they provide.	

includes signal and noise evaluations.

Understand the ٠ advantages between digital

system using a simple tool

called a Link Budget. This

communications and analog communications. • Different ways to modulate

Basic Principles of Digital Communications

Digital Communication Advantages the carrier frequency such as Phase Shift Keying (BPSK, QPSK, etc), and also spread

spectrum and its advantage to prevent inference from others

N

D

R

ŀ

Commercial and Military Communications • Examine communication

techniques including 3G, 4G, Bluetooth, WiFi, WiMax, and LTE.

• Discover how multiple antennas are being used to increase the data rates and improve the signal quality us-

types e com-

s in-JTRS,

LTE & LTE-Advanced: A Comprehensive Overview Course 225

Summary

This three-day course provides a comprehensive overview of the system architectures, principles involved, techniques applied, and performance achieved in UMTS's Long Term Evolution (LTE) and LTE-Advanced mobile broadband access (MBWA) systems. The typical types of packet switched data conveyed by this system is studied. Key enabling technologies are presented including: relevant digital modulation techniques, error detection/correction methods, and multiple access and NLOS techniques employed in Point-to Multipoint (PMP) systems. The non-line-of-sight (NLOS) mobile wireless fading path is reviewed. The LTE network architecture and supporting protocols are introduced in some detail. Key physical laver and MAC features are presented comprehensively. A downlink coverage analysis is given. The key parameters of LTE's UMTS predecessor, HSPA, as well as those of Mobile WiMAX, are compared to those of LTE. Finally, the next evolution of LTE, i.e., LTE-Advanced, is introduced, including key features of Rel.10 and Rel. 11.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the relationships between the ITU's IMT-2000, ETSI, UMTS 3GPP group, and HSPA/LTE.

•Describe the structure of various forms of packet switched data signals conveyed by MBWA systems such as IP, VoIP, and Mobile IP.

Outline

Day One Introduction	
• UMTS Evolution: From WCDMA to LTE	Structure, Spectral efficiency definitions
Cellular Coverage: Cellular Wireless Payload: Packet Switched I	Data
• TCP/IP, VoIP, and Mobile IP	
Helpful Mathematical Tools	
 Spectral Analysis 	 Thermal Noise
 Statistical methods 	
Enabling Technologies I	
 Digital Modulation: The 	 Linear Modem Realization
Basic Principles	Techniques: Scrambling/De-
 BPSK, QPSK, 16QAM and 	scrambling, Carrier recovery,
64QAM modulation systems	Timing recovery
 QAM systems Peak-to-Aver- 	 The Receiver Front End
age Power Ratio (PAPR)	
The Mobile NLOS Wireless Path	
 Antennas 	Fade Margin
 Free Space Propagation 	 Terrain fading effects
 Received Input Power and 	 Mean Path Loss

•Be familiar with the operation, spectral density, and bit error rate (BER) performance of digital modems employing BPSK, QPSK, 16QAM and 64QAM.

•Understand the various path loss and fading phenomena possible over a mobile NLOS wireless channel and how this impacts transmission performance.

•Understand the basics of Block, Convolution, and Turbo codes and how these codes are applied to improve the BER performance of LTE systems.

•Be familiar with the various techniques required for LTE PMP communications, such as signal duplexing methods, and nonline-of-sight (NLOS) methods including Orthogonal Frequency Division Multiplexing (OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-Frequency Division Multiple Access (SC-FDMA), Adaptive Antenna Systems (AAS), Antenna Diversity Systems including Delay Diversity (DD), Cyclic Delay Diversity (CDD), Space Time Block Coding (STBC) and Space Frequency Block Coding (SFBC), and Multiple Input/ Multiple Output (MIMO) systems.

•Develop a firm and detailed understanding of the system architecture, supporting protocols, key features, specifications and performance parameters of LTE and LTE-Advanced.

Target Audience

Hardware, software and system engineers, engineering managers, and product marketing managers involved in the planning, development, marketing and implementation of LTE mobile broadband wireless access systems. Some familiarity on the part of participants with basic trigonometry, and general electronics will be helpful.

 Shadowing Fading due to: Time delay spread (multipath fading), Doppler spread Enabling Technologies II 	 Multipat and Doppler Shift fading analysis LTE DL Coverage Analysis example
 Cyclic Redundancy Check (CRC) Automatic Request for Repeat (ARQ) Repetition codes Convolution codes Code Interleaving Turbo codes Hybrid-ARQ (H-ARQ) Day Two Enabling Technologies II (cont'd) 	 Transmission Signal Duplexing: FDD, H-FDD, TDD Medium Access Control (MAC) Scheduling Adaptive Modulation and Coding (AMC) Transmitter Power Control (TPC)
Non Line-of-Sight (NLOS) Techniques: Orthogonal Frequency Di-	Division Multiple Access (OFDMA) – Single Carrier-Frequency

vision Multiplexing (OFDM)

- Orthogonal Frequency

Division Multiple Access

(SC-FDMA)

Dessive Discusit	T
- Receive Diversity	- Iransmit Space Frequency
- Transmit Delay Diversity	Block Coding (SFBC)
(DD)	– Multiple Input/Multiple
– Transmit Cyclic Delay	Output (MIMO) scheme
Diversity (CDD)	– Adaptive Antenna Sys-
– Transmit Space Block	tems (AAS)
Time Coding (STBC) Diver-	– Single-User MIMO and
sitv	Multi-User MIMO
Key features and parameters of UMT	S LTE Standard
• LTE Radio Access Overview	– DI channel mannina
• System Architecture	- DI Logical Transport and
• E JITRAN Protocol Arabitos	- DL Logical, Thansport and
• E-OTRAN FIOLOCOL AICHILEC-	Plysical Channels
	- DL CONTROL DATA ANA
Frame Structure	Physical Signals
• Downlink Structure and	– DL Physical Resource and
features:	mapping to that resource
Day Three	
Key features and parameters of UMT	S LTE Standard (cont'd)
• Downlink Structure and	• Key Base Station/Mobile
features (cont'd)	Station Specifications
– DL Maximum Data Rate	LTE overview chart
– DI. Multinle Antenna	• IIE and eNodeB Conformance
Transmission Schemes	Testing
DI Multimodia Broadcast	• IIE Cortification Process
- DE Multimeata Diodacust	• Comparison of LTE and
Mullicust services (MBM3)	
• Optifik Structure and Fea-	nSPA+
tures	• Comparison of LIE and Mo-
- UL channel mapping	
– UL Logical, Transport and	• Beyond LTE: LTE-Advanced
Physical Channels	- Introduction
– UL Control Data and	– Rel. 10 Carrier Aggrega-
Physical Signals	tion
 UL Physical Resource and 	– Rel. 10 Enhanced Down-
Mapping to that Resource	link multi-antenna trans-
– UL Maximum Data Rate	mission
– UL Multiple Antenna	– Rel. 10 Enhanced Uplink
Transmission Scheme	multi-antenna transmission
 H-ARQ Operation 	– Rel. 10 Relaying
• Radio Link Control (RLC)	– Rel. 10 Support for het-
Protocol Operation	erogeneous networks
• Scheduling	– Rel. 10 MBMS enhance-
• UL Power Control	ments
• III. Timing Alignment	– Rel. 10 IIE Categories
Discontinuous recention	– Rel 11 Coordinated Mul-
(DRX)	tinoint Transmission/Recen-
• Access Procedures	tion (CoMP)
Mability	Rol 11 Carrier Agarage
• Mobility	- Kel. II Currier Aggregu-
- Inter-cent Interference COOF-	non ennancements
uniation	- Kei. II New DL CONTIOL
Seir Uptimizing Networks	cnannel
• Voice over LTE	– Kel. 11 MBMS enhance-
• QoS of EPS Bearers	ments
• UE Categories and Peak Data	– Rel. 11 High Power UE
Rates	 Cell spectral efficiency for
• Designated Frequency Bands	LTE and LTE-Advanced
Conclusion	

LTE & LTE-Advanced: An Overview Course 213

Summary

This two-day course provides an overview of the system architectures, principles involved, techniques applied, and performance achieved in UMTS's Long Term Evolution (LTE) and LTE-Advanced mobile broadband access (MBWA) systems. The typical types of packet switched data conveyed by these systems is studied. Key enabling technologies are presented including: relevant digital modulation techniques, error detection/correction methods, and multiple access and NLOS techniques employed in Point-to Multipoint (PMP) systems. The non-line-of-sight (NLOS) mobile wireless fading path is reviewed. The LTE network architecture and supporting protocols are introduced.Key physical layer and MAC features are presented. The key parameters of LTE's UMTS predecessor, HSPA, as well as those of Mobile WiMAX are compared to those of LTE. Finally, the next evolution of LTE, i.e. LTE-advanced, is introduced.

Learning Objectives

Upon completing the course the student will be able to:

•Understand the relationships between the ITU's IMT-2000, ETSI, UMTS 3GPP group, and HSPA/LTE.

•Describe the structure of various forms of packet switched data signals conveyed by MBWA systems such as IP, VoIP and Mobile IP.

•Be familiar with the operation, spectral density, and bit error

Outline

Section One	
Introduction	
 UMTS Evolution: From 	Structure, Spectral efficiency
WCDMA to LTE	definitions
• Cellular Coverage: Cellular	
Wireless Payload: Packet Switched	Data
• TCP/IP, VoIP, and Mobile IP	
Helpful Mathematical Tools	
 Spectral Analysis 	 Thermal Noise
Enabling Technologies I	
 Digital Modulation: The 	Techniques
Basic Principles	– Scrambling/Descram-
 BPSK, QPSK, 16QAM and 	bling, Carrier recovery, Tim-
64QAM modulation systems	ing recovery.
 Linear Modem Realization 	
The Mobile NLOS Wireless Path	
 Antennas 	 Mean Path Loss
 Free Space Propagation 	 Fading due to: Time delay
 Received Input Power and 	spread, Doppler spread
Fade Margin	
Enabling Technologies II	
 Cyclic Redundancy Check 	(CRC)

rate (BER) performance of digital modems employing BPSK, QPSK, 16QAM and 64QAM.

•Understand the various path loss and fading phenomena possible over a mobile NLOS wireless channel.

•Understand the basics of Block, Convolution, and Turbo codes and how these codes are applied to improve the BER performance of LTE systems.

•Be familiar with the various techniques required for LTE PMP communications, such as signal duplexing methods, and nonline-of-sight (NLOS) methods including Orthogonal Frequency Division Multiplexing (OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-Frequency Division Multiple Access (SC-FDMA), Adaptive Antenna Systems (AAS), Antenna Diversity Systems including Delay Diversity (DD), Cyclic Delay Diversity (CDD), Space Time Block Coding (STBC) and Space Frequency Block Coding (SFBC), and Multiple Input/ Multiple Output (MIMO) systems.

•Develop an understanding of the system architecture, supporting protocols, key features, specifications and performance parameters of LTE and LTE-Advanced.

Target Audience

Hardware, software and system engineers, engineering managers, and product marketing managers involved in the planning, development, marketing and implementation of LTE mobile broadband wireless access systems. Some familiarity on the part of participants with basic trigonometry and general electronics will be helpful.

 Automatic Request for Repeat (ARQ) Repitition codes Convolution Codes Code Interleaving Turbo Codes Hubrid APO (MARO) 	 tion (DBA) Adaptive Modulation and Coding (AMC) Non Line-of-Sight (NLOS) Techniques: Orthogonal Frequency Division Multiplaying (OEDM)
 Transmission Signal Duplex- ing: FDD, H-FDD, TDD Medium Access Control (MAC) Scheduling Dynamic Bandwidth Alloca- Section Two NLOS Techniques (cont'd) 	 Orthogonal Frequency Division Multiple Access (OFDMA) Single Carrier-Frequency Division Multiple Access (SC-FDMA)
 Receive Diversity Transmit Delay Diversity (DD) Transmit Cyclic Delay Diversity (CDD) 	sity – Transmit Space Frequency Block Coding (SFBC) – Multiple Input/Multiple Output (MIMO) scheme

– Transmit Space Block

Time Coding (STBC) Diver-

- Adaptive Antenna Sys-

tems (AAS)

Key features and parameters of UMTS LTE Standard:

- LTE Radio Access Overview
- System Architecture
- E-UTRAN Protocol Architecture
- Frame Structure

• Downlink Structure and features:

- DL Channel Mapping
- DL Logical, Transport and
- Physical Channels
- DL Control Data and
- Physical Signals
- DL Physical Resource and
- mapping to that resource
- DL Maximum Data Rate
 DL Multiple Antenna
- Transmission Schemes
- DL Multimedia Broadcast
- Multicast Services (MBMS)
- Uplink Structure and Features:
 - UL Channel Mapping
 - UL Logical, Transport and
 - Physical Channels
 - UL Control Data and
 - Physical Signals
 - UL Physical Resource and
 - Mapping to that Resource
 - UL Maximum Data Rate
 - UL Multiple Antenna
 - Transmission Scheme

Conclusion

- H-ARQ Operation
- Radio Link Control (RLC)
- Protocol Operation
- Scheduling
- Inter-cell Interference Coordination
- Access Procedures
- Mobility
- QoS of EPS Bearers
- UE Categories and Peak Data Rates
- Designated Frequency Bands
- Key Base Station/Mobile
- Station Specifications
- LTE overview chart
- Comparison of LTE and HSPA+
- Comparison of LTE and Mobile WiMAX
- Beyond LTE: LTE-Advanced
 - Carrier Aggregation
 - Enhanced multi-antenna
 - support
 - Relaying
 - Support for heterogeneous networks
 - Coordinated Multipoint transmission/reception
 - (CoMP)
 - New DL control channel

Modern Radar Systems

Course 258

•Nov 16-Nov 20, 2015 - San Jose, CA / Christopher J. Baker

Summary

Radar sensing has long been an indispensable tool for military surveillance and civil remote sensing. The ability to function day and night, in all weathers and to cover wide areas rapidly means that radar has found wide application from short ranges of a few hundred meters to space based operations. In recent vears, radar systems have gone through something of a revolution with the advent of high speed, wide dynamic rage A to D converters and corresponding digital processors. This has led to array based antennas, ultra high range resolution and imaging, advanced adaptive processing for enhanced detection, tracking and target classification. Indeed, radar sensing is continually being extended and new areas such as cognitive sensing and sensing for autonomous applications are set to bring about a further revolution. This course begins by introducing the basic, underpinning concepts that are the foundation of all radar systems. It then builds on this to introduce contemporary methods for moving target detection, array antennas for radar, tracking, high-resolution techniques, imaging and target classification. Throughout the course, real life examples are used to illustrate the key points and ensure that concepts are presented in a realistic and meaningful way.

Learning Objectives

Outline

Upon completing the course the student will be able to:

• Define the key concepts underpinning modern radar design

•Demonstrate the radar equation and its application

• Derive mathematics in relation to radar engineering design

•Examine the operation and trade-offs of modern radar design

• Identify and explain engineering problems in relation to radar design

• Understand the operation of phased array antenna, array technology and techniques for controlling E scan resources

• Understand and compute radar system performance for MTI and tracking radar

• Be familiar with the differences between monostatic and bistatic radar, the concepts and design of passive bistatic radar air target detection

• Examine how high resolution is generated in radar, radar imaging (SAR and ISAR)

• Understand the processes used in target classification •Have an appreciation of future trends in radar, radar signal processing and new areas of application

Target Audience

Radar engineers, radar system architects, test engineers, product engineers and technicians. Technical managers who are working in radar related fields ad require exposure to RF system technology.

Day One Radar Basics		DPCASTAP	Kalman filteringarray antennas
 a little history radar parameters ranging Radar Performance Prediction noise 	 range resolution radar equation radar performance predic- 	 parameter estimation monopulse alpha-beta filtering Day Four Bi static and multistatic radar 	 array technology array radar resource management
 clutter and clutter modeling targets and target modeling Day Two Radar sub-systems 	tion	 bistatic radar concept design parameters target modeling clutter modeling 	 multistatic radar passive bistatic radar direct signal interference removal
 transmitters antennas Waveforms 	receiversdisplays	• bistatic ambiguity function Day Five High Resolution Radar and Imaging	• spectrum efficiency
 waveform types matched filtering pulse compression ambiguity function analysis Day Three Radar Modes FM radar 	 linear frequency modulation phase modulation ultra low side lobe design 	 high resolution techniques waveform agility stretch processing synthetic aperture radar (SAR) inverse synthetic aperture radar (ISAR) 	 3-D interferrometric SAR (InSAR) imaging radar systems impact of far-out phase noise on receivers and trans- mitters
• air traffic management radar	• MTI	• classification definitions	• performance metrics

- classification process
- target signatures
- classification methods
- classification performance
- quadrature mixing and DC
- offset
- transmitter architectures :
- spectrum mask, ACI, EVM

Stealth/Counterstealth and Future Trends

- passive stealth techniques
- active stealth techniques
- low frequency radar
- MIMO radar
- ultra wide band radar
- cognition and radar sensing

Monolithic Microwave Integrated Circuit (MMIC) Design

Course 181

Summary

The successful design of monolithic microwave integrated circuits (MMICs) is the fruit of a disciplined design approach. This three-day course covers, in detail, the theory, and practical strategies required to achieve first-pass design success. Specifically, the course covers the monolithic implementation of microwave circuits on GaAs and GaN substrates including instruction on processing, masks, simulation, layout, design rule checking, packaging, and testing. Numerous design examples are provided with emphasis on increasing yield, and reliability.

Students are encouraged to bring their laptop computers to class. CAD software is used in this course.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day One

Introduction to MMIC Design	
 Advantages and tradeoffs: cost, performance, reliability, size. Applications: Satellite communications, wireless LANs, microwave links, cellular networks. Choosing among device Passive MMIC Elements 	 technologies: GaAs FET/ pHEMT, GaAs HBT, GaN HEMT MMIC Design cycle process selection, device characterization, circuit topology decision, design, taping-out, testing.
 Lumped element modeling resistors, capacitors, inductors, via holes. Transmission line modeling microstrip, coplanar. Combiners and dividers Two-port network basics 	 Wilkinson, Lange. Baluns, coupled lines, transformers, couplers. Design example: 50-to-5 ohm matching network.
 S-, Y-, Z-, and H-parameters. Gain definitions Gmax, MSG, Unilateral gain. Day Two Active Devices 	 Conjugate matching. Stability analysis odd mode, even mode analysis.
• De-embedding, Characteriza-	 GaAs MESFET, HEMT, HBT,

• De-embedding, Characterization, modeling.

and GaN HEMT

- Learn the advantages and limitations of MMIC DesignsTake advantage of the inherent benefits of MMICs over hybrid
- circuits. •Account for the parasitics of the active device.
- •Design biasing networks for active circuits.
- •Design gain amplifiers MMICs using lumped and distributed matching.
- •Design power amplifiers MMICs.
- •Improve the yield of MMIC chips.
- •Calculate the lifetime of MMIC chips in packaged and unpackaged assemblies.

Target Audience

Microwave engineers who want to design, fabricate, and test robust RF/Wireless MMICs, in the 1-50 GHz frequency range, will benefit from this comprehensive design course. Basic knowledge of microwave measurements and transmission line (Smith Chart) theory is assumed.

 Emerging technologies Si CMOS, SiGe BiCMOS Device parameters ft, fmax, gm, RON, COFF, parasitics. Equivalent circuit—physical basis. Intrinsic equivalent circuit. Buffer Amplifiers	 Illustrative example: equivalent circuit extraction. Thermal resistance and lifetime estimation. Design example: choosing FET gate-pitch and bias for 10+ years lifetime.
 Biasing network selection. Single stage design: lumped vs. distributed matching. Design example: 30 GHz power amplifier. Day Three Layout steps 	 Multi-stage design. Feedback amplifiers. Design example: 5 GHz, 1/2 Watt power amplifier.
 Microstrip layout rules. Coplanar layout rules. Process control and monitor- ing. Design rules and component ItemTesting and Packaging 	values limitations.Reverse engineering.Yield and sensitivity analysis.
Rapid testing: on-wafer, dc- screening.Package design.	fects, stabilization.Thermal management: epoxy, eutectic.

• Package parasitics: cavity ef-

Network Security: Penetration Attack Testing

Course 238

Summary

This two-day course is meant to bring security professionals up to speed with tools, tactics, and skills of today's hackers. It also serves as an introduction to the methodology of penetration testing and how to conduct and manage such test. The skills learnt throughout this course are the first steps towards being an effective penetration tester. We will learn about the characteristics of social engineering attacks, how they exploit human emotions, how a successful attack is conducted, and proper defense mechanisms against them. We will also discuss physical and logical penetration, the tactics hackers follow to place themselves physically or logically inside an organization, and proper defense mechanisms. Insider attacks are one of the most dangerous as they involve entities that already have some level of access. We will discuss examples of insider attacks and how to defend against them. Finally, we will learn about vulnerability analysis (scanning and fuzzing), exploitation (software buffer/heap overflow), and Wi-Fi penetration. This is an experiment-oriented course where we will be conducting experiments in a lab environment for every topic discussed. Students will participate in experiments, which the instructor will prepare, to show how a given attack is conduct-

Outline

Day One Introduction to Penetration Testing	
 Overview of penetration testing Ethics of penetration testing Penetration Testing Techniques I 	• Pennetration testing and the Legal System
 Social engineering attacks 	 Insider attacks

• Physical penetration testing

ed and how to defend against it.

Learning Objectives

Upon completing the course the student will be able to:

- •Understand the ethics of penetration testing
- •The legal system and how it might affect a penetration test
- •Social engineering attacks, how one is conducted, and proper defense mechanism (Lab: using the Social Engineering Toolkit) •Insider attacks, the potential damage, how such attack is carried, and proper defense mechanisms (Lab: password cracking) •Vulnerability analysis (using Nessus and OpenVAS) and fuzzing

•Vulnerability exploitation (using Metasploit/W3AF/custom exploits)

•Wi-Fi penetration testing (scanners, password crackers, DoS)

•Managing a successful penetration test

Target Audience

Professionals such as engineers, product developers, managers, security officers, city/state government or law enforcement professional, and network administrators who have a special interest in quickly getting up to speed with the penetration testing methodology, skills, and techniques

Day Two

Penetration Testing Techniques II

- Vulnerability analysis
- Vulnerability exploitation
- Wi-Fi penetration testing
- Managing a penetration test

PCB Filters and Multiplexers Using Standard SMT Components Course 245

Summary

Filters are one of the fundamental building blocks of RF and microwave systems, along with amplifiers, oscillators, mixers, and switches. When we design a printed circuit board (PCB) based system, we rely on surface mount technology (SMT) components to realize a very compact, low cost system. Although there are now some standard filter designs available in SMT format, we often need to design a custom filter or multiplexer. These custom filter designs can be realized using standard SMT inductors and capacitors and perhaps a few printed distributed structures as well. Successful designs have been demonstrated across a frequency range of tens of MHz up to 6GHz. This frequency range covers most of the current wireless standards and many of the military communications bands as well.

This course is devoted to the fundamentals of practical filter design for RF and microwave systems in a low cost, PCB environment. The central challenge is to identify the most useful filter topologies for this construction method and frequency range. The search for a useful topology must include knowledge of each component's spurious response. Various SMT component libraries will be examined with this in mind. Another serious challenge to the designer is the rather limited catalogue of standard component values that are readily available. Simple techniques to overcome this limitation will be demonstrated. Although the majority of designs are fixed in frequency and bandwidth, some tunable bandpass and notch filter topologies will be presented.

We will apply EM simulation to our designs when the layout becomes highly compacted, or when non-standard connections to library components are required. EM simulation will also be used to optimize the performance of edge launched PCB connectors. Example filter designs that cover a broad range of applications will be presented with measured data and error

Outline

Day One

- Introduction to PCB Filter Design
- Basic PCB Construction
- Basic Filter Concepts
- Chebyshev and Elliptic Prototypes
- Cross-Coupled Filters
- Useful Bandpass Topologies
- Useful Bandstop Topologies

analysis. The instructor will choose examples to develop based on the interests of the class.

DAY ONE

We will start with a brief discussion of PCB construction techniques and how they affect our filter designs. Then we will turn to basic filter design concepts. Starting with lowpass prototypes, we will touch on Chebyshev and elliptic prototypes and finding prototype element values. Next we will turn to the concept of cross-couplings and how they introduce finite transmission zeros. Finally, we will discuss some of the more useful filter topologies we have found for PCB based bandpass and notch filters.

DAY TWO

The bulk of this session will be devoted to examples of Chebyshev and elliptic function filters that have been built using standard SMT components. In most cases we will show the evolution of the design from ideal lumped prototype to final layout with comments on the design decisions that were made. Before we can measure our filters we need a reliable transition from the PCB to our connector of choice. SMA edge launch connectors are quite popular and are available in several styles. We will spend a few moments discussing how to optimize these connectors for higher frequency performance.

Learning Objectives

Upon completing the course the student will be able to:

•understand and design filters using PCB layout and SMT components

•understand fundamentals of practical filter design for RF and microwave systems

•extract data from hardware and from EM simulations Target Audience

The course material is suitable for filter designers, designers of other components, systems engineers, and technical managers.

Multiplexers

• Edge Launch Connectors

Day Two

PCB Filters and Connectors

- Lowpass Filter Examples
- Bandpass Filter Examples
- Notch Filter Examples
- Diplexer Examples

Phase Noise and Jitter Course 220

Summary

Timing-related problems associated with signal sources are one of the major bottlenecks in designing today's highly complex systems. Over many decades, jitter has been extensively studied and utilized to characterize timing inaccuracies in both digital and analog systems. Conversely, phase noise has been exclusively used in RF systems to represent frequency or phase inaccuracy. For both timing and frequency sensitive systems, phase noise measurement is emerging to be the most accurate method of characterizing all types of signal sources (RF, analog or digital). This short course covers the fundamentals of phase noise and jitter, which ultimately set the limit to PLL performance in applications such as frequency synthesis, serial data communication and clock/data recovery. Simple techniques to model phase noise at the circuit component-level and relate it to the overall phase noise and jitter performance of PLLs are presented. The course will also provide a detailed analysis of the different phase noise measurement techniques along with in-depth noise floor analysis. The focus throughout this course will be on providing practical measures utilizing numerous real life examples. This class is typically offered in three 2-hour sessions (9:00am to 11:00am Pacific time) via web-classroom. Each daily session is a live event but the recording can be made available for up to 7 days to support students requiring a more convenient viewing time. Please contact the office for details at info@besserassociates.com.

This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited. Students will receive a signed Certificate of Completion.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Session 1 (2 hours)

• Phase noise representation and different terminologies used to characterize phase noise and spurs

• AM vs. PM noise

• Relation between phase noise spectrum, power spectral error and error vector magnidensity and frequency spectrum density

Session 2 (2 hours)

• Impact of close-in phase

• Types of phase noise (i.e. additive vs. multiplicative noise)

• Phase noise upconversion process (AM to PM)

• Relation between RMS phase tude (EVM)

noise on communication

•Get in-depth understanding of phase noise representation and become familiar with the different terminologies used to characterize phase noise and spurs

•Understand the relation between phase noise spectrum, power spectral density and frequency spectrum density •Learn the difference between AM and PM noise

•Learn about the different types of phase noise (i.e. additive vs. multiplicative noise) and how each is derived for a given system

•Analyze the impact of phase noise on communication systems and the relation between RMS phase error and error vector magnitude (EVM)

•Derive the relation between RMS phase error and bit error rate (BER) for different modulation schemes (e.g. BPSK, QPSK, 16-QAM, 64-QAM)

•Understand the impact of phase noise on OFDM systems

•Learn about various phase noise measurement techniques and equipment

•Analyze random vs. deterministic jitter and different jitter measurement types (i.e. phase jitter, period jitter and cycle-tocycle jitter).

•Learn about jitter measurement techniques and equipment •Gain knowledge at extracting jitter information from phase noise measurement.

Target Audience

•Engineers seeking to understand fundamental PLL designs issues relating to frequency stability and timing jitter.

•Engineers involved in board, circuit and system-level design of wireless or wireline systems.

•Test engineers and technicians involved in phase noise and jitter measurement.

•Engineers designing PLLs systems or subsystems such as voltage-controlled oscillators (VCOs) or reference oscillators (e.g. crystal oscillators)

•Application and product engineers supporting customers in areas relating to frequency generation.

systems

• Relation between RMS phase error and bit error rate (BER) for different modulation schemes (e.g. BPSK, QPSK, 16-QAM, 64-QAM

Session 3 (2 hours)

 Phase noise measurement techniques and equipment

• Random vs. deterministic iitter

• Jitter measurement types (i.e. phase jitter, period jitter • Impact of phase noise on OFDM systems

• Impact of far-out phase noise on receivers and transmitters

and cycle-to-cycle jitter)

- Modeling Jitter
- Jitter measurement techniques and equipment

• Extracting jitter from phase noise measurement

Phase-Locked Loop and Frequency Synthesis Design

Course 236

Summary

This two-day course provides the practical knowledge necessary to design frequency synthesis circuits and systems using phase-locked loops and related technologies. Coverage includes each of the basic building blocks that are used in phase locked oscillators and frequency synthesizers. Understanding how each block operates will give you an appreciation for its impact on the overall performance of the oscillator with respect to phase noise and tuning range/lock time, among other factors.

Learning Objectives

Upon completing the course the student will be able to:

Outline

•Describe the theory of operation for PLL, DAS, and DDS frequency synthesis techniques.

Develop and explain principles and uses of PLL components including mixers, phase detectors, oscillators, and dividers.
Examine limitations of real world components, design tradeoffs and their effect on PLL performance.

•Develop and analyze more advanced frequency synthesis systems designs.

•Test PLL circuits and systems to verify design integrity. Target Audience

Engineers designing, specifying, or new to PLL frequency synthesis circuits and systems will benefit from this course. Prerequisites include basic digital circuit design, analog design skills including transfer functions, and basic control loops.

Day One		• Feedback and negative resis-	 pulling and pushing effects injection locking and field
 History from test and measurement perspective Direct and indirect frequen- Direct Analog Synthesis (DAS) Opsillator combinations 	cy synthesis • Performance requirements	 Delay oscillators Reference types Inductor issues Day Two Physical Systems 	Injection tocking and neur feedbackGeneral noise characteristicsVCO characterization
 Oscittator combinations Harmonics, multiplication and division Divide-and-mix Spurious signals Indirect Frequency Synthesis Stability transfer Frequency lock 	 Noise Specifying the reference Example the Synthesizer Equation Phase lock 	 Important parameters and hierarchy loop filter types, active and passive Loop filter design functions MS Excel worksheet Phase Noise and Spurs 	 stability while managing wide component variations component value tolerance Acquisition of lock divider value minimization
 PLLs: Basic Model and Analysis Block diagrams Laplace transfer function and linearized model; loop types and orders Loop filters Open and closed loop gain; Bode plots; phase and gain 	 in range Frequency modulation (FM) problems and solutions Sampling effects Calculation of transfer functions and time domain response 	 Phase noise components reference noise divider noise PD noise and FOM VCO noise Loop filter noise Modeling PLL noise using MS Fractional-N PLL 	Excel • measuring PLL noise floor • noise variations with loop bandwidth • reference sidebands: causes and solution options • reduction of loop filter noise
 margin stability and transient times Acquisition, lock and hold Phase Detectors 	• Nonlinear modeling/simula- tion	 Basic principles inherent spurious mechanism fractional-N implementation 	techniquessigma-delta benefits and consequencesaddressing fractional N spurs
 General principles Mixer Sample and hold, microwave samplers Dividers 	 Digital options the phase-frequency detector Charge pumps 	 Direct Digital Synthesis (DDS) Numeric oscillator square vs. sine waveforms spurious signal causes and Synthesis Technique Combinations 	their minimizationspur diagnosis methods
 Pre-scalers: single, dual, and multiple modulus Noise floor Oscillators 	 input impedance variation power supply phase modulation (PSPM) 	 Synthesizer equations DAS + PLL DAS + DDS DDS + PLL 	 DAS + DDS + PLL Multiple loops Increasing frequency range

Testing TechniquesPhase noise measurement details

- Switching speed
- Loop dynamics validation

Power Amplifier ABC's

Summary

This course aims to bring participants up to speed on the basics of RF power amplifier design and operation in the shortest possible amount of time. Considerable attention is devoted to defining, classifying, and improving the efficiency and linearity of power amplifiers. Numerous design examples are provided for participant exploration. The class offers approximately one day's worth of material, but is typically offered in five 90-minute sessions (9:00am to 10:30am Pacific time) via web-classroom. Each daily session is a live event but the recording can be made available for up to 7 days to support students requiring a more convenient viewing time. Please contact the office for details at info@besserassociates.com. This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited. Students will receive a signed Certificate of Completion.

Learning Objectives

Outline

PA Design - Five 90 Minute Web Classroom Sessions Getting Started with Power Amplifiers

 Introduction Amplifiers classes A through Z Straightforward (Cripps) approach Real device characteristics Improving Efficiency 	and their impactModelling with harmonic balance and SPICEDesign of a class AB amplifier
 Class B and C amplifiers gain, load line, efficiency enhancement Class E, F and harmonic ter- Multistage design theory 	mination amplifiers: realistic expectations • Push- pull amplifiers, bipo- lar and FET
 Driver amplifiers and inter- stage matching, some solu- tions Balanced amplifiers, a 	solution to some matching problems • Design of a 2 stage amplifier

Upon completing the course the student will be able to:

- •Design low distortion and efficient power amplifiers.
- •Bias power amplifiers for class A, A/B, B, and C operation
- •Understand the tradeoffs among the classes of operation.
- •Design amplifiers for gain or power or a compromize of the two.
- •Describe several techniques used to linearize power amplifier output.
- •Utilize modern circuit simulators and a simple system simulator.
- •Understand the effect of harmonics on PA performance.

Target Audience

Component and system level designers, as well as engineering managers will benefit from this course. RF/wireless engineers who wish to expand their circuit design skills from basic linear design techniques to nonlinear methods, or just wish to understand power amplifier performance at the design level. Basic knowledge of microwave measurements and transmission line (Smith Chart) theory is assumed.

Linearization Techniques

- Predistortion
- Feed-forward
- Lossless feedback

Power Regulation & Conversion Design for VLSI and SoC Systems

Summary

Developing power conversion/regulation solutions for VLSI systems and mixed-signal analog/RF System-on-Chip (SoC) types of loads require engineers with solid background in both traditional power converters design as well as analog/RF mixed-signal VLSI design. Power conversion/regulation circuits with such a VLSI and SoC focus are rarely covered in graduate or undergraduate power electronics courses. With the growing demand in semiconductor industries for expertise in this area, there is a serious shortage in engineers who have the necessary background combination to design efficient and costeffective solutions for such loads. This course will introduce the fundamental principles of power conversion/regulation circuits such as Linear/switching regulators, DC - DC converters, and battery chargers used in VLSI systems. This includes: Architectures, Performance metrics, characterization, stability and noise analysis, practical implementations, on-chip integration issues, and design considerations for portable, wireless, and RF SoCs.

Learning Objectives

Outline

Day One

System level concepts, performance	e metrics, linear regulators
• Basic definitions	– DC, small-signal AC,
 Power management tasks 	and large-signal transient
• Schemes and challenges in	metrics
mixed-signal SoCs	 Regulation Concepts
 Types of loads 	• Basic linear regulator design
• Performance metrics of volt-	 stability analysis and com-
age regulators (power manage-	pensation
ment language)	
Day Two	
Linear Regulators and Switching Reg	gulators
• Continuation of basic linear	 basic design equations
regulator design	 continuous and discontinu-
 PMOS versus NMOS power 	ous conduction modes
FETs	 Control Techniques (pulse
• on-chip versus off-chip out-	width and pulse frequency

modulation)

• AC analysis

stability and compensation

- on-chip versus off-chip output capacitor
- Basic switching power concepts
- Step-down switching regula- techniques tor (Buck)

- Upon completing the course the student will be able to:
- •Understand power conversion/regulation system specifications, performance parameters, and data sheets.
- •Understand performance tradeoffs and the special requirements for large mixed-signal SoC loads.
- •Understand limitations and requirements of on-chip integration of power converter circuits.
- •Understand basic circuit topologies and circuit design procedures of linear regulators and switching DC - DC converters (buck, boost, and buck-boost).• Understand basic circuit topologies of linear and switching Li-Ion battery chargers. Target Audience

Analog and power management design engineers, researchers and graduate students who are interested in power management design, design engineers who are interested in power management integration in nanometer CMOS technologies, and mixed-signal SoC designers. In addition, RFIC design engineers will find this course very helpful in understanding issues related to powering RF circuits. Technical managers will also learn current technology limitations and future technology trends.

Day Three

Switching Regulators	
 Current-mode control hysteretic and gated-oscillator control loss mechanisms in switching regulators ripple analysis and mitigation techniques Step-up switching regulator Day Four 	 (Boost) basic design equations continuous and discontinuous conduction modes AC analysis stability and compensation techniques
Switching Regulators and battery ch	largers
Other switching converter topologies – Buck-Boost, Forward, and Elv-back	 charger topologies (linear and switching)

- Battery Chargers
- types of batteries
- charging profiles
- constant-current constant-
- voltage charging
- pulse charging

Practical Digital Wireless Signals Course 232

Summary

This three day course is designed to provide all participants with a physically intuitive understanding of wireless communication signals and why they work the way they do. With the growing impact of wireless communications on the basic operation of society, the need for a more general understanding of the basis for this technology is more important than ever. This course approaches wireless communications signals through the window of physics and physical principles. While a solid understanding of the mathematical theory of wireless communications signals is essential for detailed system design and analysis, the fundamental choices in system application and approach are often best approached physically. We do not shun math in this presentation, but instead of using math as the presentation base we instead use it as a follow up illustrator of the principles discussed.

The sessions cover all of the major modulations used in digital wireless communication, including ASK, FSK, PSK, QAM, and OFDM. Spread spectrum operation is included, comparing the relative performances of Direct Sequence (DS) and Frequency Hopping (FH) techniques. System principles are also presented such as an extensive discussion of the Shannon Capacity Limit, the physical basis of Nyquist filtering, plus an introduction to antennas and wireless signal propagation. Important system parameters and analysis tools which are common to any modulation type are presented and demonstrated. Public course attendees will receive a copy of the book - Practical Digital Wireless Signals by Dr. Earl McCune.

Physically intuitive understanding is the purpose for this course on Wireless signal and system fundamentals. Under-

Outline

Dav One - Common Signal Parameters, Modulation Types Common Background Issues and Tools

• the special properties of • What is keying? Signaling definitions Nyquist filters polar and rectangular • simples vs. duplex equivalence constellation and vector • time-spectrum correspondiagrams dences • eye diagrams symbol construction • SNR vs. Eb/No • filtering characteristics **Modulation Types** ASK (Amplitude-shift keying) • Definitions • envelope statistics constellations energy efficiency • occupied bandwidth • demodulation principles bandwidth efficiency introduction to noise perfor- power efficiency mance PAPR

standing why these signals and techniques work, not just how, is the key objective of this course.

Learning Objectives

Upon completing the course the student will be able to:

•Explain the fundamental differences among ASK, FSK, and PSK wireless signals

•Understand the demodulation effort (cost) differences among digital wireless signals

•Understand the basic performance metrics of any digital wireless system

•Explain the principles of modern QAM and OFDM signals

•Understand what is a spread spectrum modulation (and what is not), and the differences between direct sequence and frequency hopping techniques

•Show how the Shannon Limit predicts the many difficulties in building high data rate, long range, finite bandwidth wireless systems

•Understand the relationship between antenna gain and directivitv

•Understand the need for coding, the fundamental types of coding, and their top level costs and benefits

Target Audience

This course will be of interest to people new to wireless communications design, and to communication specialists who are very familiar with the mathematics of wireless signals but may desire broadening this understanding with a physical perspective. It will also be interesting to technical marketing engineers who desire a physical intuition into the tradeoffs that the corresponding design engineering teams are wrestling with.

 Definitions 	• energy efficiency
• phase tree	• signal limiting
 occupied bandwidth 	• demodulation principles
• bandwidth efficiency	• introduction to noise perfor-
• power efficiency	mance
• Doppler shift	 FM threshold effect
Day Two - PSK and QAM Modula	ations
PSK (Phase-shift keying)	
Definitions	 power efficiency
 constellations 	• PAPR
• Why nearly all PSK signals	 envelope statistics
are really QAM	 energy efficiency
• CPM is not a PSK	 Doppler tolerance
• offset PSK	 demodulation principles
	 introduction to noise perfor-
 occupied bandwidth 	• Incroduction to noise perior-

 Definitions 	 envelope statistics
 constellations and signal 	• offset QAM
structure	• Doppler tolerance
 occupied bandwidth 	 energy efficiency
 bandwidth efficiency 	 demodulation principles
• power efficiency	• introduction to noise perfor-
• PAPR	mance
Day Three - Systems and Applicat	tions
OFDM (Orthogonal Frequency Divisio	on Multiplex)
Definitions	 envelope statistics
 constellations 	• energy efficiency
 occupied bandwidth 	• Doppler intolerance
 bandwidth efficiency 	 demodulation principles
• power efficiency	 introduction to noise perfor-
• PAPR	mance
Antennas and Wireless Propagation	
Path Loss	 Receive Sensitivity
 Transmit Power 	Range Expectations
• Antenna Gain	• Level Diagrams
 Antenna Directivity 	• Delay Spread
• Near and Far Fields	• Diversity
 Polarization 	 Correlation
Shannon's Capacity Limit	
• Shannon's Fundamental The-	 SNR vs. Eb/No forms
orem on Information Theory	 finite available power
 Shannon-Hartley equation 	• power vs. bandwidth
 capacity density 	 signal design region
Principles of Coding	
 Motivations 	- block codes, convolution-
 definitions 	al codes, turbo codes
 coding for bandwidth ef- 	 coding to manage error
ficiency	bursts
 coding for spectrum control 	 coding for channel through-
and link operation	put (MIMO)
 coding for error control 	 equalization
Spread Spectrum	
 Direct Sequence and Fre- 	 jamming margin
quency Hopping	 chips and spreading codes
 cyclic cancellation 	 frequency hopping details
 synchronization 	 direct sequence details
 interference suppression 	 DS vs. FH comparison

• process gain

Cost Comparisons among Signal Implementations • The Keep-It-Simple (KIS) Procedure

Practical Digital Wireless Signals - Measurements and Characteristics Course 210

Summary

This five day lecture and measurement based course is designed to provide all participants with a physically intuitive understanding of wireless communication signals and why they work the way they do. With the growing impact of wireless communications on the basic operation of society, the need for a more general understanding of the basis for this technology is more important than ever.

This course approaches wireless communications signals through the window of physics and physical principles. While a solid understanding of the mathematical theory of wireless communications signals is essential for detailed system design and analysis, the fundamental choices in system application and approach are often best approached physically. We do not shun math in this presentation, but instead of using math as the presentation base we instead use it as a follow up illustrator of the principles discussed.

The five days cover all of the major modulations used in digital wireless communication, including ASK, FSK, PSK, QAM, and OFDM. Spread spectrum operation is included, comparing the relative performances of Direct Sequence (DS) and Frequency Hopping (FH) techniques. System principles are also presented such as an extensive discussion of the Shannon Capacity Limit, the physical basis of Nyquist filtering, plus an introduction to antennas and wireless signal propagation. Important system parameters and analysis tools which are common to any modulation type are presented and demonstrated. Public course attendees will receive a copy of the book - Practical Digital Wireless Signals by Dr. Earl McCune.

Physically intuitive understanding is the purpose for this

Outline

Dav One - Common Signal Para Common Background Issues and T	meters, Measurements, and Tools Tools	 demodulation principles introduction to noise performance 	mance -
 What is keying? Signaling definitions polar and rectangular equivalence time-spectrum correspon- dences 	 the special properties of Nyquist filters simples vs. duplex constellation and vector diagrams eye diagrams 	 FSK (Frequency-shift keying) Definitions phase tree occupied bandwidth bandwidth efficiency power efficiency 	 energy efficiency signal limiting demodulation principles introduction to noise performance
 symbol construction filtering characteristics Day Two - Modulation Types and Type-Specific Measurements 		Doppler shift FM threshold effect Day Three - Modulation Types and Type-Specific Measurements PSK (Phase-shift keying)	
ASK (Amplitude-shift keying) • Definitions • constellations • occupied bandwidth	 power efficiency PAPR envelope statistics 	 Definitions constellations Why nearly all PSK signals are really QAM 	 offset PSK occupied bandwidth bandwidth efficiency power efficiency

- bandwidth efficiency
- energy efficiency

course on Wireless signal and system fundamentals. Understanding why these signals and techniques work, not just how, is the objective of these five days.

Learning Objectives

Upon completing the course the student will be able to:

•Explain the fundamental differences among ASK, FSK, and PSK wireless signals

•Understand the demodulation effort (cost) differences among digital wireless signals

•Understand the basic performance metrics of any digital wireless system

•Explain the principles of modern QAM and OFDM signals

•Understand what is a spread spectrum modulation (and what is not), and the differences between direct sequence and frequency hopping techniques

•Show how the Shannon Limit predicts the many difficulties in building high data rate, long range, finite bandwidth wireless systems

•Understand the relationship between antenna gain and directivitv

•Understand the need for coding, the fundamental types of coding, and their top level costs and benefits

Target Audience

• CPM is not a PSK

This course will be of interest to people new to wireless communications design, and to communication specialists who are very familiar with the mathematics of wireless signals but may desire broadening this understanding with a physical perspective. It will also be interesting to technical marketing engineers who desire a physical intuition into the tradeoffs that the corresponding design engineering teams are wrestling with. This course will also be helpful to those who need to identify signals based on their measured characteristics.

PAPR

envelope statisticsenergy efficiency	demodulation principlesintroduction to noise perfor-	• The Keep-It-Simple (KI
 Doppler tolerance 	mance	Procedure
QAM (Quadrature Amplitude Modula	ation)	
 Definitions 	 envelope statistics 	
 constellations and signal 	 offset QAM 	
structure	 Doppler tolerance 	
 occupied bandwidth 	 energy efficiency 	
 bandwidth efficiency 	 demodulation principles 	
• power efficiency	• introduction to noise perfor-	
• PAPR	mance	
Day Four - Modulation Types and	Type-Specific Measurements	
OFDM (Orthogonal Frequency Divisio	on Multiplex)	
Definitions	 envelope statistics 	
 constellations 	• energy efficiency	
 occupied bandwidth 	 Doppler intolerance 	
 bandwidth efficiency 	 demodulation principles 	
 nower efficiency 	 introduction to noise perfor- 	
• PAPR	mance	
Antennas and Wireless Propagation	munee	
Path Loss	Receive Sensitivity	
• Transmit Power	Range Expectations	
Antenna Gain	• Level Diagrams	
Antenna Directivity	Delay Spread	
 Near and Far Fields 	 Diversity 	
Polarization	Correlation	
Pay Five Systems and Application		
Day Five - Systems and Application	UIIS	
Shannon's Capacity Linnit	• CND Th /No farmer	
• Shannon's Fundamental The-	• SNR VS. ED/ NO IOIMS	
orem on information incory	• Infite available power	
• Snannon-Hartley equation	• power vs. bandwidth	
capacity density	 signal design region 	
Principles of Coding	11 1 1 1	
• Motivations	- block codes, convolution-	
• definitions	al codes, turbo codes	
• coding for bandwidth ef-	• coding to manage error	
ficiency	bursts	
• coding for spectrum control	• coding for channel through-	
and link operation	put (MIMO)	
 coding for error control 	 equalization 	
Spread Spectrum		
• Direct Sequence and Fre-	• jamming margin	
quency Hopping	 chips and spreading codes 	
 cyclic cancellation 	 trequency hopping details 	
 synchronization 	 direct sequence details 	
 interference suppression 	 DS vs. FH comparison 	
nrococc anin		

process gain

Cost Comparisons among Signal Implementations • The Keep-It-Simple (KIS)

Production Testing of RF and SOC Devices for Wireless Communications Course 166

Summary

This class focuses on back-end production and manufacture testing of RF and wireless products. Implementing the lowest Cost Of Test (COT) solutions on production ATE (Automatic Test Equipment) is a requirement to be a successful test/product/ application engineer. This guiding principal is used throughout the class as we learn how to implement both parametric and system level testing solutions using a variety of ATE systems including: Advantest T2000, Verigy's 93K, 84K, Credence ASL3K, Teradyne Catalyst, and Flex systems).

Increasingly System-On-a-Chip (SOC) and SIP (System In a Package) technology is merging RF with baseband and high speed digital devices. These combination chipsets require highly skilled test/application engineers with knowledge of RF, mixed-signal, high speed digital, and baseband modulation/demodulation to implement low cost, fast time to market solutions on ATE.

This course is newly updated to provide test engineers with the necessary SOC/SIP and ATE skills required for the next generation devices. Students will receive a copy of the book - Production Testing of RF and System-on-a-Chip Devices for Wireless Communications by Keith Schaub.

Learning Objectives

Upon completing the course the student will be able to:

•Describe RF, mixed signal and basic digital circuit parameters and terminology.

• noise figure

• phase noise

•Perform COT (cost of test) analysis and make recommenda-

Outline			
Day One			
Introduction to Production Device (D	OUT) Testing		
• Test systems vs. rack & stack	– load boards		
• Moving from bench to pro-	 devices 		
duction testing	– LNA		
• COT associated with testing	– PA		
discrete devices	– oscillator		
 Test houses, test cells 	– mixer		
• Peripherals	– IQ modulator		
– handlers	– filter		
– probers	– VGA		
– contactors	– ADC/DACs		
Day Two			
Measurement Overviews for All Discrete Devices			
• S-parameters	 harmonics 		
• power	 L0 leakage 		
 modulated power 	• image suppression		
• gain	• carrier suppression		

tions based upon economic criteria

•Break down the classical radio (super-heterodyne) and newest radio (ZIF (Zero IF)) block diagrams into their constituent parts (amplifiers, modulators, mixers, phase locked loops (PLLs), filters, DACs (Digital-to-Analog Converters) and ADCs. (Analog-to-Digital Converters)

•Understand traditional measurements like gain, power compression, TOI (third-order intercept), harmonics, noise figure, phase noise, ACPR (Adjacent Channel Power Ratio) and their continued importance in testing the building blocks of today's SOCs.

•Examine modern system level tests like BER and EVM (Error Vector Magnitude) and develop and understanding of how they are used in conjunction with traditional tests to architect a wireless device's test list

•Perform an in-depth analysis of Bluetooth testing requirements and how to implement the multiple BER (bit error rate) techniques currently used in industry today

•Understand the basics of noise figure and phase noise in relation to SOC devices in a production environment.

Target Audience

The course is designed for new and practicing test/product engineers who are involved with the production, test, and development of RF/Wireless SOC solutions in the DC to 8 GHz frequency range. It is equally useful to engineers wishing to expand their existing skill set to cover the broad technology range requirements as well as the in-depth discipline range requirements of wireless SOC devices.

Engineering degree or at least three years applicable practical experience is recommended.

 adjacent channel power SNR (signal to noise ratio) SFDR (spurious free dynamic range) 	 MDS (minimum detectable signal) noise floor accuracy
Day IIIree	
 Time domain vs. frequency 	• Digitizers and AWGs (test
domain	system hardware)
• FFTs	
Today's SOC Radios: Hardware & M	easurement Requirements
 Traditional super-hetero- 	architectures
dyne	 Translating RF to mixed
 Source and receive mea- 	signal
surements	 RF-to-digital bits archi-
 Newer homodyne transceiv- 	tectures
ers (ZIF - Zero IF)	– RF-to-digital IQ - Base
– IP2 vs. IP3	band implications; IQ, dif-
 Translating RF/mixed signal 	ferential, DC offsets, power
measurement theory	servo
– RF-to-analoa base band	

68

power compression

• TOI (Third Order Intercept)

Day Four

Bluetooth Radio	
 Origins of Bluetooth 	data packets
 Frequency hopping 	 Adaptive power control
 Bluetooth Modulation 	 The parts of a Bluetooth
 Bluetooth data rates and 	radio
Bluetooth Radio Transmitter Tests	
• Synthesizer settling time -	• ICFT (Initial Carrier Frequen-
power vs. time & frequency vs.	cy Tolerance)
time	 carrier frequency drift
 transmit output spectrum 	• VCO drift
• modulation characteristics	 frequency pulling & pushing
Bluetooth Receiver Tests	
• Bit Error Rate	– Adjacent Channel Inter-
– XOR method	ference
– FPGA	– In-band & out-of-band
– digital pin	blocking
– digitizer	 intermodulation interfer-
• BER receiver measurements	ence
– sensitivity	– maximum input power
– Carrier to Interference	level
Production test times and their relat	ive COT implications
Analyze the WLAN radio and its prod	luction testing requirements
• 802.11b	band hardware
• 802.11a	 Digital I&Q architectures on
• 802.11g	DSP offerings
• Turbo modes impact on base	5
Analyze the CDMA radio and its proc	luction testing requirements
• Review of CDMA technology	– ACPR, ACLR

- Dynamic range

• Wide bandwidth considerations

Day Five

- Moving Beyond Production Testing
- Today's COT model

 Fixed cost, recurring cost, lifetime, utilization, yield, accuracy, multi-site testing, parallel testing, test engineering skill
- RF BIST (Built-In-Self-Test)
- RF DFT (Design for Testability)
 - RSSI (Received Signal Strength Indicator)
 Internal BER testing
- Parallel testing
 - True parallel testing
 - Pseudo parallel testing
 - Alternative parallel testing techniques
- Emerging production testing methods
 - Interleaving
 - DSP threading
 - Concurrent testing

Radio System Design - Theory and Practice Course 180

Summary

This course identifies the key system design parameters, showing how they compound in a given configuration and hence how they relate to the top-level specifications. The course builds from basic models and descriptions of system behaviour. Describing common receiver and transmitter architectures, understanding the key impairments to reliable communications and looking at system solutions to modulation, multiple access and air interface standards. Various tools are used to provide accurate initial estimates of component performance while others show the relative contribution of each circuit block to the total. These tools help isolate critical parameters allowing designers to focus on the key aspects. In this way, designers can focus on the key elements that have to be solved to meet a design requirement in a cost effective manner while making sure that all the parts, when put together, will work as expected.

Recognizing that system design is not completely analytic, the course illustrates the art of design with practical analysis tools. The lectures contain useful formulations of key analysis techniques as well as Excel templates and practical tips applied to commercial CAD tools. The more advanced design concepts are illustrated with examples using commercial software.

Learning Objectives

Autline

Upon completing the course the student will be able to:

- •understand the basics of system performance from constituent component block characteristics
- anticipate how component blocks interact
- •relate component level parameters to top-level system specifications
- •compare common receiver and transmitter architectures
- •illustrate both good and bad architecture solutions •demonstrate the relative strengths and weaknesses of simple
- spreadsheets, commercial software and CAD packages

Target Audience

The key objective of this course is to understand the basics of system performance from constituent component block characteristics, how they interact and how they can be related, to top-level system specifications. It uses examples and some historical perspective to help understand how and why modern radio systems work.

This is an intermediate level course for engineers or project managers. It is suitable for system designers wishing to better understand component level implications or practicing component design engineers interested in managing more complex sub-assemblies and systems. The course is suitable for those working in radio as well as in the mobile phone industry, handset or base station, satellite communications, radar and EW / ECM.

Day One - Signal Integrity Noise		<i>Identifying worst ones</i>Phase noise and L0 effects	• I / Q conversion
 Origins and Definitions Noise figure, noise factor, noise temperature, Band- width assumption, Thermal floor -174 dBm/Hz Cascade Calculations Intermodulation 	 Standard formulae, Single step simplification, Calculat- ing per stage increase and percentage contribution Examples 	Filters Selectivity Estimating complexity Effects of diplexing Passband Loss Qu considerations Day Three - System Architecture 	 Bandwidth considerations Filter Functions without the Circuit Theory Standard methods transfer functions
 Textbook Definitions Input or output reference, 2nd, 3rd and Nth order IM Cascade Calculations Single step cascade - Compression 	 phase addition, Calculat- ing per stage increase and percentage contribution Sensitivity, selectivity and spur free dynamic range 	 Architecture Choosing the Correct IF High and low side mixing Up/down or multiple conversion Direct conversion 	 Gain Distribution Special Considerations for Transmitters The Role of DSP
 Textbook Description: Useful approximations Cascade Calculations Day Two - Signal Translation General Discussion Mixers 	• Example illustrating the Lin- ear / Non-Linear Continuum	 Design Tools Spreadsheets - Plusses and Minuses Examples and Uses of Low Day Four - Signal Transport Link Budget 	Cost Programs • Commercial System Simula- tors and examples
 Signal Conversion Image Band - Signal and Noise 70 	 Noise figure of mixers Calculating Spurs Frequency and level 	 Introduction to antennas Free space propagation path analysis 	 Effects of fading, delay spread and Doppler Balancing the link budget

Modulation

• Analog modulation AM and FM

• Digital modulation schemes, BER

Day Five - Radio Layer Standards Multiple Access Methods

 The distinction between modulation and access methods
 The dimensions of frequen Examples of FDMA, TDMA, CDMA and OFDMA
 Multiple access planning, frequency re-use capacity and

cy, time and symbols

 Advanced schemes OFDM

 bandwidth utilisation and channel capacity

efficiency

Advanced Concepts

• 3G Long Term Evolution,

HSDPA and beyond

• 4G networks, MIMO, Ad hoc networks and Cognitive radio

RF & Wireless Made Simple Online Course

Course 061

Summary

Learn how to speak engineer...or at least understand them! ...and learn at your own pace....

RF & Wireless Made Simple online course can teach a basic understanding of RF and wireless technology in as little as 8 hours, or up to six months whenever you need a "refresher".

Frequently used terms will be explained, as well as how to calculate dB. The names and functions of RF system components are discussed and a description of how they interact to generate and process signals is provided. The course explains the basic principles of signal processing and multiple access techniques in wireless telecommunications. A variety of relevant topics will be covered including a comparison of the specifications of commercial wireless systems. The course concludes with a discussion on the future of wireless technology and its applications.

Learning Objectives

Upon completing the course the student will be able to:

Describe the integral relationship of the EM spectrum, basic wave theory, and power calculations with RF and wireless technology.

Outline

Define and elaborate on impedance, resistance, reactance. and mismatch. List the names and functions of RF system components and describe how they interact to generate and process signals. Explain the basic principles of signal processing. Identify and describe the basic principles of multiple access techniques in wireless telecommunications. Explain the process underlying propagation of electromagnetic waves. List and compare the specifications of commercial wireless systems. Discuss the future of wireless technology and its applications. More information... **Target Audience** Marketing, sales, instructors, and all other nontechnical personnel

working with the RF and wireless industry will benefit from this

course. No prior technical knowledge is required to learn from this

online course. More information...

RF and High Speed PCB and EMI Design Fundamentals

Course 042

Summary

This two-day course enables practicing engineers and CAD technicians to develop design rules for RF and high-speed designs, choose an optimal design tool, and organize the design process to most efficiently execute the design that will insure circuit performance, and minimize costs and production time.

Learning Objectives

Upon completing the course the student will be able to:

•Discuss fundamental RF and digital PCB design issues. •Compare and contrast transmission lines types, characteris-

Outline

required to follow the course. Day One **Fundamentals of Digital and RF Circuits** • RF vs. high speed digital • Pulse rise/fall times • Signal integrity • Propagation time • Properties of high speed • Spectra of digital signals

logic gates Simple but very important physics

chiple satisfy important physics	
 Electric fields, dielectrics, and capacitance Magnetic fields, mu-materials, and inductance Electromagnetics and Transmission Line Fundamentals 	boundaries • Frequency, wavelength, and phase • Resistance and Ohm's Law
 PCB traces Velocity of propagation Electrical length Skin effect Microstrip lines Striplines Use of Transmission Lines 	 Coaxial Coplaner Line impedance Transmission energy Reflected waves Terminations
 Transmission line or wire ? Line impedance control Day Two PCB Layout Strategies 	Transmission line systemsLine parasitics
 Grounding via placement DC Power distribution "Ground" return PCB Materials and Fabrication 	Ground bouncePlane layers
 Dielectric materials The basic fab process Layer Stack-ups Sources of Interference 	Multi-layer parasiticsDispersion

tics, and situations in which they can be used.

•Describe, evaluate, and compare termination types, PCB materials and fabrication processes, and packaging types.

•Identify and compensate for sources of interference - EMI and EMC.

•Measure and fine-tune circuit performance.

•Identify and select tools for developing transmission line design rules.

Target Audience

Anyone working with RF circuits or high-speed digital logic, including RF engineers, digital logic engineers, technicians, and PCB layout professionals will benefit from this course. A practical engineering background and basic mathematics are

Shield tracesRibbon cables
Ground discontinuitySlew rate control
• Differential signals
• Serpentine line coupling

RF and Microwave Transistors/Semiconductor Materials

Course 233

Summary

This introductory tutorial develops a picture of how electrons behave in semiconductor materials and applies it to functional descriptions of the basic semiconductor devices: the P-N junction, heterojunction, the bipolar transistor and the FET. The effects of material properties will also be discussed. The course runs from 9:00 AM to 11:00 AM Pacific time. A recording of the course will be available for one week for those who are unable to attend the live event, and questions will be answered both during the session and via email after the session has ended. This course is intended for registered individual

conductors

Outline

Tutorial Topics

- FET and BJT structures
- Electrons and holes in semi- Junctions

students only. Please contact us for group rates at info@ besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.

Learning Objectives

Upon completing the course the student will be able to:

•Explain the basics of semiconductor materials and structures
Target Audience

Engineers and Managers who can benefit from an introduction to the semiconductor devices they use in design and/or manufacture of RF/microwave products.

ties

• Transistor operation

• Using heterojunctions for higher performance

• Effects of material proper-

74

RF and Wireless Made Simple Course 234

Summary

This two-day day course provides nontechnical professionals with a firm understanding of basic RF principles and technical concepts. RF technology, wave propagation and transmission techniques will be characterized for various performance requirements. This course will also convey a conceptual understanding of RF wireless systems and how they work for the multiple wireless standards. All explanations use simple physical descriptions without complex mathematics.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day One

Dav Two

RF Principles and Terminology • RF energy- what is it ?

- The characteristics of RF waves
- Understanding basic RF terms: Frequency, wavelength,

blocks through transmission

- Defining RF performance: Return Loss, VSWR, Reflection Coefficient, S-parameters
- Electrical Signal Principles:
- power, occupied bandwidth Time and frequency, voice and • The magic of RF propagation video, digitizing of analog sig-• Connecting all the building nals, data, bit error rate (BER)

lines

- •Understand the RF language
- •Describe RF energy and transmission techniques
- •Convert numbers to dB without a calculator
- •Describe RF performance and electrical signal principles
- •Illustrate the block diagram of a complete wireless system
- •Describe how voice and video signals are digitized, compressed, and corrected
- •Explain multiple access technology
- •Describe high data rate, short range wireless systems

Target Audience

Nontechnical personnel working with the RF and wireless industry will benefit from this course. Engineers and technicians with limited RF experience will also benefit. There are no prerequisites for this course.

Basic RF System Architectures

• The basic building blocks of	point (IP3)
transmitters and receivers:	 Modulation and multiple
– oscillators	access techniques (OFDM,

- mixers
- attenuators
- amplifiers and filters
- Defining system perfor-

mance terms: Dynamic range, noise figure, minimum detectable signal, intermodulation distortion• 3rd order Intercept OFDMA, BPSK, QPSK, QAM).

• Antenna principles

• Using link budgets to model performance

• The fundamentals of operating systems: WCDMA, LTE, Wi-Fi(802.11), Bluetooth, WiMAX

RF and Wireless Made Simple II

Course 058

Summary

This two-day seminar provides anyone working in the RF industry with the opportunity to efficiently increase their understanding of RF terminology, components, and systems.

Learning Objectives

Upon completing the course the student will be able to:

Convert dB and dBm values competently. Convert mismatch specifications to return loss, SWR, or reflection coefficient.

Design microstrip transmission lines.

Match with the Smith Chart.

Explain an RF system block diagram.

Outline

Day One	
Review of dB and dBm Conversions	
Specifying Mismatches	
• Return loss	 S Parameters
• SWR	 Conversion from one defini-
 reflection coefficient 	tion to another
Microstrip Transmission Lines	
• Choosing board material	 Calculating microstrip line
• Designing a 50-ohm line	wavelength
Matching with the Smith Chart	
• Software	mounted on a microstrip board
 Matching of a transistor 	
RF System Block Diagram	
Transmitter Components	
Day Two	
Receiver Components	
• Filters	Mixers
• Low noise amplifiers	
Receiver Performance	
• Noise figure	• Dynamic range
• Intermodulation products	Software

Describe the function and operation of each component of an RF system.

Design a receiver to meet noise figure and intermod requirements.

Select appropriate RF components for each system block from datasheets.

Use simple RF software.

Target Audience

Practicing RF and wireless design and manufacturing engineers, general managers, technicians, salespersons and marketers will all benefit from this course. Prerequisites include attendance at RF and Wireless Made Simple I (or equivalent experience), and the ability to use a handheld scientific calculator.

Antennas and Duplexers RF System Design Exercise • Selecting appropriate components from a review of

manufacturers' datasheets

RF and Wireless Transceiver Design & Evaluation Techniques Course 199

Summary

This 5-day course provides technical professionals with the design concepts and development tools required to architect RF transceivers for most wireless applications. The course is intended for working engineers that are in the design, test or support phase of new transceiver technology.. Also, Critical system specifications will be discussed based on worldwide standards and an in-depth review of transceiver configurations will be evaluated. The use of RF simulation tools will be used to show design concepts and the trade-offs between modulation techniques and RF performance. RF air interface requirements and specifications will be presented for various wireless standards including LTE and systems like GPS, Bluetooth, 802.11, wideband CDMA, EDGE and others. Radio architectures based on digital modulation techniques like OFDM, OFDMA, SC-FDMA, QAM, BPSK, QPSK, GSM, 8PSK, GFSK will be analyzed using simulation tools and design examples.

Transmitter architectures and designs will be shown and include discussions on power control, modulation schemes, and linearization techniques. Various receiver architectures including zero IF, low IF and superhetrodyne, multifunction and software defined radio are described with design examples. Receiver nonlinearities and dynamic noise performance will be modeled to show system limitations.

Designs of the latest architectures including 4G LTE transceivers will be presented with class participation using the lasted CAD design tools. Finally, transceiver test and troubleshooting

Outline

Day One

Wireless Specifications

• Specifications: LTE, WiMAX,	 Air Interface Concepts
and others	The Open Systems
 UMTS Evolution from 	Interconnection(OSI) reference
WCDMA to LTE	model
• 3GPP Physical layer stan-	 Spectrum Options and Mi-
dards	gration Plans
 Defining Quality of 	• Spectrum deployed for TDD
Service(QoS) Classes	mode and FDD mode
• Categories of data transmis-	• The future of Mobile Broad-
sion	hand-Beyond ITF
	bulla Deyolla Dib
Performance Goals	balla Deyolla LIL
• Performance Goals RF System Requirements and Archit	ectures
 Performance Goals RF System Requirements and Archit Digital modulation schemes 	ectures width for optimum noise
 Performance Goals RF System Requirements and Archit Digital modulation schemes BPSK, QPSK, GFSK, GSM, 	ectures width for optimum noise performance, PLL designs
 Performance Goals RF System Requirements and Archit Digital modulation schemes BPSK, QPSK ,GFSK, GSM, OFDM, QAM 	ectures width for optimum noise performance, PLL designs • Up-down converters
 Performance Goals RF System Requirements and Archit Digital modulation schemes BPSK, QPSK , GFSK, GSM, OFDM, QAM Multiple access techniques 	ectures width for optimum noise performance, PLL designs • Up-down converters – conversion gain/loss,
 Performance Goals RF System Requirements and Archit Digital modulation schemes BPSK, QPSK , GFSK, GSM, OFDM, QAM Multiple access techniques OFDMA, SC-FDMA 	ectures width for optimum noise performance, PLL designs • Up-down converters – conversion gain/loss, noise figure, port-port isola-

- Phase noise, loop band-

procedures from RF to baseband will be described. Students are encouraged to bring their laptop computers to class.

Learning Objectives

Upon completing the course the student will be able to:

- •Describe common wireless standards and their impact on RF transceiver architectures
- •Analyze physical layer radio specifications for WCDMA, LTE, Bluetooth and 802.11
- •Describe major digital modulation schemes and their relationship to RF transceiver designs
- •Analyze transmitter Architectures and linearization techniques
- •Describe common types of receivers and their components
- •Understand the overall end-to-end network archicetures for **3GPP** technologies.
- •Analyze typical performance parameters, and accompanying limitations
- •Learn how to architect a receiver to meet requirements
- •Evaluate modern system architectures including multifunc-
- tion/multi-standard types including the software defined radio •Test, and troubleshoot complex radio system from RF to baseband

Target Audience

Component designers, test engineers, system designers, managers and technicians with an RF background will benefit from this course. Students should bring a notebook computer to class.

- Classes of operation, small signal parameters, large signal parameters, dynamic range
- Filters
 - types , Amplitude/ Phase distortion, band pass

Dav Two

- **Receiver Architecture and System Design**
- Receiver block diagrams
- Important receiver parameters
- Sensitivity
- Minimum Detectable
- Signal (MDS) - Dynamic range (IP2 &
- IP3)
- Spurious free dynamic ranae
- System noise figure
- Wideband receiver per-

- response
- Digital signal-to-noise ratios (Eb/No) for different modulation schemes

formance in terms of BLER

- Signal-to inference ratios (SIR)
- Receiver types - zero IF
 - low IF

and BER

- Superheterodyne
- A/D considerations
- Receiver elements descrip-
- tion with typical performance
- Receiver demodulation techniques for various systems
- IF frequency selection for

- D dola-
 - Amplifiers

 spurious free operation Filtering and shielding CAD and evaluation of com- 	 Desensitization Vs QoS Intermodulation distor- tion Vs power control 	
plete receiver types	– Multipath fading Vs BLER	
• Evaluating trade-offs		
Day Three		
Transmitter Architecture and System	Design	
• Transmitter nonlinearities	• Transmitter power devices	
and distortion	• Efficiency enhancing tech-	
– harmonic/intermodula-	niques	
tion distortion	– voltage, current, load line	
– AM/AM – AM/PM	modulation	
– ACLP	 Transmitter distortion 	
– EVM	reduction	
• Transmitter noise and filter-	 Transmitter architecture 	•
ing	design examples for 4G LTE]
Physical layer Power Control Archite	ctures	
• WCDMA	 Open Loop power control 	
 HSPA, Enhanced Link and 	 Closed loop power control 	•
LTE Power requirements	 Inner loop power control 	j
 Uplink power control 	 Outer loop power control 	
• RACH	 Digital /Analog gain parti- 	
 Algorithms for processing 	tioning	
TPC commands	 Subcarrier power mapping 	
• Reed-Miller encoded PCC bits		
Day Four		
Multifunction Transceiver Architectu	re and Design	:
 Link budget design 	architecture	
 Commercially available 	– LTE, WiMAX, and others	
transceiver elements and their	 Multifunction transceiver 	
specifications	design and examples	

• Complete system design and • Software defined radio

Day Five

System Test and Evaluation

• Transmitter in-channel mea-

- intermodulation distor-

- dynamic range

tion

surements

- channel bandwidth
- carrier frequency
- channel power
- sub-channel power
- $\ occupied \ bandwidth$
- peak-to-average power
- ratio
- peak power
- EVM
- *phase/frequency error*Transmitter out-of-band
- Transmitter outmeasurements
 - spurious
 - spurious
 - harmonics
- Factors affecting transmitter impairments

– compression

- incorrect filter coefficient
- LO phase noise
- I/Q amplitude/phase
- imbalance
- Receiver in-channel measurements
 - Signal to Interference ratio
 - Sensitivity at specified
 BLER
 - co-channel rejection

RF Design: Applied Techniques

Course 248

•Sep 14-Sep 18, 2015 - San Jose, CA / Bob Froelich

Summary

This new course incorporates the most popular topics from Applied RF Techniques 1 and 2 in a 5-day format. The material presented provides participants with the critical tools to design, analyze, test, and integrate linear and nonlinear transmitter and receiver circuits and subsystems.

Impedance matching is vitally important in RF systems and we use both graphical (Smith Chart) and analytical techniques throughout the course. We also examine discrete and monolithic component models in their physical forms, discussing parasitic effects and losses, revealing reasons why circuit elements behave in surprising manners at RF. Filters, resonant circuits and their applications are reviewed through filter tables and modern synthesis techniques, leading into matching networks and matching filter structures. Since wires and printed circuit conductors may behave as transmission line elements, we also cover microstrip and stripline realizations. 2D and 2.5D electromagnetic field simulators are used in the course to illustrate transmission line behavior and component coupling effects.

In the area of active circuits, we first examine fundamental limitations posed by noise and distortion. The next topic is small-signal linear amplifier design, based on scattering parameter techniques, considering input/output match and gain flatness RF stability is examined both with S-parameters and also with the Nyquist test using nonlinear device models. Since DC biasing affects RF performance, we review active and passive bias circuits and see how they can be combined with impedance matching circuits. Another important consideration is circuit layout, therefore we look at problems caused by coupling, grounding and parasitic resistance. Narrow and broadband designs are compared, using lossless and lossy impedance matching as well as feedback circuits. Low-noise amplifier design is illustrated, discussing trade-offs among gain flatness, noise, RF stability, and impedance match. Harmonic and intermodulation performance is also examined. Performance tradeoffs of balanced amplifiers are viewed. The course concludes by examining large-signal and ultra wideband feedback amplifiers.

Outline

Dav One

Impedance Matching Techniques

- Transmission zeros, LC network order
 Maximum power transfer
- from Z1 to Z2
- Single LC-section impedance circuit-Q
- matchingBandwidth and parasitic considerationsWideband match -- low
- circuit-Q

Circuit level engineers will master the latest linear and nonlinear design techniques to both analyze and design transceiver circuits. System engineers will examine block level circuit functions; learn the performance limits and how to establish specifications. Test engineers will learn how to test and evaluate circuits. Transceiver circuits to be covered include power amplifiers, oscillators (PLL, VCO, etc.) and the critical receiver elements. Receiver architecture and synthesizer design to meet critical requirements will be presented. Techniques to successfully integrate circuit functions at the system level will be discussed.

Students are encouraged to bring their laptop computers to class. The design software available for use in this public course is from NI (formerly AWR).

Learning Objectives

Upon completing the course the student will be able to:

- •Describe RF circuit parameters and terminology
- •Match impedances and perform transformations

•Understand Impedance matching, component models, and PCB layout issues

- •Design filters with lumped and distributed components
- Predict RF circuit stability and stabilize circuits
- •Design various RF amplifiers: small-signal, low-noise, and feedback
- •Understand and quantify nonlinear effects of transmit and receive systems
- •Use CAD models to analyze/design circuits
- •Design low noise and highly linear amplifiers
- •Understand receiver performance parameters and modulation techniques
- •Design signal sources using PLL (phased lock loop) techniques
- •Explain and design VCOs and stable oscillators Target Audience

The course is designed for engineers who are involved with the production, test, and development of RF components, circuits, sub-systems, and systems.

Engineering degree and the course, RF Design - Core Concepts (#247), or equivalent background, including Smith chart and concepts such as wavelength, electrical length, and dB notation, are recommended.

- Narrowband match -- high amples circuit-Q • Illustrative ex-Lumped RF Component Models
- Resistors Inductors
- Inductors and Q Variations
- Capacitors Effective Ca-
- pacitance and Q Variations
- Primary self-resonance variations
- Definitions of Magnetic Properties

 Magnetic Core Applications 	 Ferrite Bead Impedance
Transmission Lines and Ground Para	asitics
• Via-Hole and Wrap-Around	ferential Vias
Ground Inductance	 PC Board Materials
• Parasitic Inductance and	• Transmission Line Realiza-
Capacitance Effects at RF	tions • Transmission Line
• Multilayer PC-Board Parasit-	Discontinuities
ics • PCB/Interconnects	 Converting an Electrical
• Open Stub Effects in Dif-	Circuit to Physical Form
Filters and Resonant Circuits	
Introduction Recipes for	nant structures
lumped_element filters	Piezoelectric filters
Parasitic loss and 0 factor	Filter element transforma
Impodance inverters	tions
Pand page filters with rose	tions
• Banu pass inters with leso-	
Active Circuit Fundamentals	
• Linear circuit definition •	tude
Amplifier Performance Limita-	• Various Power Gain Defini-
tions	tions
• Thermal Noise Definition •	 Testing for RF Stability
Harmonic Distortion Defini-	Causes of RF Oscillation
tions	 Typical Stability Circles for
• Gain Compression • Inter-	an RF Transistor
modulation Distortion	 RF Stabilization Techniques
 Spurious-Free Dynamic 	 Nyquist Stability Analysis
Range • Error Vector Magni-	
Small Signal Amplifier Design	
• Transducer Gain Expression	• Operating Gain Definitions •
• Simultaneous Conjugate	Operating Gain Circle Applica-
Match for Maximum Gain	tion
• Two-stage Amplifier Design	 Maximizing Output Power
for Gmax • Gain Definition -	• Available Gain Definitions •
Block Diagram	Available Gain Circles
Low Noise Amplifier Design	
Sources of RF noise Noise	Noise of cascaded stages
Factor and Noise Figure defini-	Two-port noise parameters
tions	• Low poice design procedure
Broadband Amplifiers	- row-noise design procedule
Broadband Concents	Applications
Wideband Amplifier Design	• 10 (000 MUR Foodbook Arr
wideballa Allipuller Desigli	- 10-4000 MILZ FEEUDACK AM-
Overview	• Envirolant Circuit Con Min
• Gain Control and Impedance	• Equivalent Circuit for Micro-
Matching in Feedback Ampli-	wave FET
ners	• Distributed Amplifier and
• Series and Parallel Feedback	Cascode Connection
Day Three	
Nonlinear Circuits & Concepts	
• Where nonlinearity is im-	analysis
portant	• X Parameters
 Methods for nonlinear 	
High Efficiency Power Amplifier Desi	gn
• PA transistors • Matching	• Predicting output power
for maximum gain or output	contours
power	• High efficiency techniques
• Load-pull measurement	• Class A. B. C. D. F. harmonic
techniques	termination consideration

Day Four

Receivers and Their Architecture

 Noise floor, maximum input, and dynamic range Receiver spurs • Block diagram Modulation Techniques 	 Channel selection • Filtering Downconverters / Mixers Effects of phase noise Quadrature demodulation
 AM, FM, digital Multiple access Bit error rate and SNR Frequency synthesis, PLL design 	 CDMA • MIMO Baseband filtering • Effects of distortion
 Basic PLL and closed-loop response Loop filters • Frequency Day Five 	dividers • Output spectrum • Contribu- tors to phase noise
Feedback and negative resistance o • RF stability and loop gain	scillator design open-loop design
Feedback oscillators and AM FM Noise Considerations AM and FM decomposition	Ketlection oscillators
 AM and FM decomposition of noise Physical origins of noise VCOs, DROs and crystal oscillators 	• Noise conversion in ampli- fiers and oscillators
• Electronic tuning strategies	

• Oscillator specification,

testing

• Commercially available VCO's

RF Design: Core Concepts

Course 247

•Aug 24-Aug 28, 2015 - Web Classroom, WebEx / Bob Froelich

Summary

This course is the first in a series for RF Design engineers and other professionals in that field. It presents core concepts essential in understanding RF technology and presents circuitlevel designers with the foundation needed to work effectively with high frequency electronics. Participants gain analytical, graphical (Smith Chart), and computer-aided techniques to analyze and optimize RF circuits in practical situations. This course reviews traditional circuit definitions based on voltages and current and transitions to power-flow concepts and scattering parameters (S-parameters) used in the wireless domain. The material covered forms the foundation for follow-on courses dealing with specific RF and Microwave circuit and component design.

This seminar contains material typically covered in one full day of instruction but is divided into five 90 minute webclassroom presentations.(9:00am to 10:30am Pacific time) Each daily session is a live event but the recording can be made available for up to 7 days to support students requiring a more convenient viewing time. Please contact the office for details at info@besserassociates.com. This course is intended

aular and nolar form

Outline

Introduction to RF Circuits • Linear circuit analysis in RF

 Entear circuit analysis in RF systems Frequency range of cover- age: 100-3000 MHz • Log conversion, dB and dBm scales 	 Component Qs Importance of Impedance Matching Normalization
RF/MW Fundamentals	• Kr component related issues
 Complex impedance and admittance systems Resonance effects One-port impedance and admittance Series and parallel circuit conversions Lumped vs. distributed ele- ment representation Transmission Lines 	 Signal transmission/reflection and directional couplers Key parameters : Gamma, mismatch loss, return loss, SWR Impedance transformation and matching • Illustrative exercise
 Transmission line types: coaxial, microstrip, stripline, waveguide Characteristic impedance 	and electrical lengthInput impedance of loaded transmission line

for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.Students will receive a signed Certificate of Completion.

Learning Objectives

Upon completing the course the student will be able to:

- •Describe RF circuit parameters and terminology
- •Work comfortably with dB notation
- •Understand Modern CAE/CAD Techniques
- •Work with transmission lines
- •Use graphical design techniques and the Smith Chart

Target Audience

The course is designed for professionals working in the RF domain for the first time as well as seasoned veterans requiring a good review of the core concepts. An electrical engineering background (or equivalent practical experience) is recommended, as well as a familiarity with complex numbers. This program prepares students to take the follow-on RF Design: Applied Techniques course.

- The Smith Chart and Its Applications • Polar Gamma vs. Rectangular • Expanded and compressed Z plots Smith Charts • Impedance and Admittance • Impedance and admittance Smith Charts transformations Normalized Smith Charts • Transmission line manipula-• Lumped series/parallel eletions ment manipulations • Illustrative examples Constant Q circles **Scattering Parameters** • Review of one-port parameters Two-port Z-, Y-, and Tparameters • Cascade connections and deembedding S-parameters of commonly
 - used two-ports
 - Generalized S-parameters
 - Mixed-mode S-parameters
 - Illustrative examples

RF Fundamentals, Modeling and De-Embedding Techniques

Course 186

Summary

This 3-day course provides technical professionals with the fundamental concepts and engineering tools needed to understand RF fundamentals and test fixture de-embedding techniques. The latest software simulation tools are used to demonstrate these concepts and techniques.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Day One

• Transmission Lines Analysis • Microstrip Line Modeling Vs

RF Fundamentals	
• Characteristics of Electro- magnetic Energy	 Complex Impedance and Admittance Systems
• Conductors vs. Transmission	RF Transmission Lines
Lines	• Impedance Transformations
 Voltage/Current Relation- 	and Matching
ships	
The Smith Chart/Scattering Parame	eters
• Understanding the Funda-	• The 2*2 Scattering Matrix
mentals of the Smith Chart	 Cascaded Two- Port Connec-
 Two-Port Definitions (S- 	tions
parameters)	
Day Two	
Passive Component Modeling	
• Resistors at RF Frequencies	 Simulation Models Vs Mea-
 Straight Wire Inductance 	sured Results
 Capacitors and Equivalent 	 Package Parasitic Models
Models	
Transmission Lines and Ground Para	asitics
• Via-Hole and Wrap Around	Frequency
Ground Inductance	 PCB Multilayer Designs and

Tradeoffs, Ground Effects

- •Describe RF waves and their characteristics
- •Understand how to model RF Passive devices and Test fixtures at **RF** Frequencies
- •Understand Basic De-embedding Techniques
- •Explain RF measurement & Calibration Techniques
- •Understand Measurement Limitations and Error Functions **Target Audience**

Test and measurement technicians and engineers who need to understand proper techniques for modeling fixtures and passive devices.

Day Three
Measurements
• De-Embedding
 De-Embedding Techniques
(LRL,TRL, etc.)
 Developing De-Embedding
Test Fixture Models
 Calibration and Measure-
ment Error Corrections
 Calculating Total Uncertain-
ties
 De-Embedding Using T-
Parameters

RF Measurements: Principles & Demonstration

Course 135

Summary

This 5-day lecture-based course explains essential RF measurements that must be made on modern wireless communications equipment - mobile/smart phones, wireless LANs, GPS navigation systems, and others. Current models of the essential test instruments will be explained and demonstrated, including vector network analyzers, power meters, spectrum analyzers, digitally modulated signal generators and vector signal analyzers.

All of the measurements will be demonstrated on actual RF wireless components including power amps, LNAs, mixers, upconverters, and filters. These measurements will include traditional tests of power, gain, group delay, S parameters, AM to PM, intermodulation products, harmonics and noise figure. The unique measurements of wireless communications will then be made with PSK and FSK digitally modulated signals including spectral regrowth, constellation diagram distortion, error vector magnitude (EVM), and bit error rate.

Learning Objectives

Upon completing the course the student will be able to:

•describe the RF measurements that must be made on modern wireless communication equipment.

Outline

Day One **Course Objectives and Course Outline** • Review of RF principles match expressions • Wave parameters - Reflection coefficient, return loss, mismatch loss, - frequency, amplitude, phase SWR • basics of propagation • The Smith Chart - an over-• dB and dBm view Mismatches S-parameters • Conversion between mis-**RF Test Equipment - Principles of Operation** • Cable and connector types/ • Demonstration: how to proper care setup and calibrate a basic • Signal generators VNA measurement • Power meters and power Vector network analyzer measurements on non-packsensors • Frequency counter aged devices Vector network analyzer Dav Two • Spectrum analyzer Video Bandwidth, Attenua-• Demonstration: how to opertion, Scaling ate a spectrum analyzer • Noise figure meter - Resolution Bandwidth. • Vector signal analyzer **Measurement Uncertainties** • Mismatch uncertainty VNA - motivation for mea-

•take proper care of RF cables and connectors in the lab

•explain why the various measurements must be made.

•operate the RF test equipment that is used to make these measurements

•setup and calibrate a Vector Network Analyzer measurement •make measurements on power amps, LNA's, mixers, upconverters and filters

• make traditional tests of power, gain, group delay, S parameters, AM to PM, intermodulation products, harmonics, and noise figure with CW signals.

•ensure that distortion products from the instrumentation are not corrupting the measurement results

•make measurements with PSK and FSK digitally modulated signals of spectral regrowth, constellation diagram distortion and ISI, error vector magnitude, and bit error rate.

•develop reasonable expectations for measurement uncertainties.

Target Audience

Design and production engineers and technicians interested in improving measurement skills through a practical approach will benefit from this course. The lecture includes a review of wireless communication systems, RF components and the tests that must be made, making this an ideal course for professionals wishing to have a thorough grounding in the knowledge of how wireless systems operate.

surement calibration	
RF Communication system block dia	agram
 Specifications of compo- 	nents to be tested
Transmitter components	
Phase locked oscillator	
 principles of operation 	ing on Spectrum Analyzer
• measurement of phase noise	 Marker noise function
– log/video vs. rms averag-	
Upconverter	
 Modulation basics 	a spectrum analyzer
 principles of operation 	 output spectrum of up-
 demonstration: measure- 	converter
ment of conversion gain using	
Day Three	
Power Amplifier	
 principles of operation 	work Analyzer
• demonstration measurement	• Harmonic power using Spec-
– swept gain	trum Analyzer
 power sweep/1 dB com- 	 checking for distortion
pression point	products in the test equip-
 AM to PM distortion 	ment
– phase on the Vector Net-	
Receiver Components	
Noise and Noise Figure	
 Noise figure measurement 	 demonstration measurement

• Noise figure measurement

using Y-factor technique Filters • Principles of operation - match • Demonstration measurement - group delay on the Vector Network Analyzer - passband - inband loss **Day Four** Low Noise Amplifiers • principles of operation - phase using power sweep • Noise figure on Vector Network Analyzer • intermodulation products • demonstration measurement • demonstration measurement - S-parameters vs. frequen- qain/1dB compression cy on the Vector Network point Analyzer _ output power Mixer • principles of operation - output power - conversion gain **Intermodulation Products** ing a spectrum analyzer • description of intermodulation products • definition of IP2 • Demonstration: IP3/TOI us-**Overall Receiver Performance** • Typical overall receiver • Calculating system perforperformance mance **Day Five Multiple Access Techniques** • FDMA • CDMA • TDMA • OFDMA Performance of RF components with digital signals power amplifier nonlinearity • Block diagram • Digital modulation fundawith different modulation mentals techniques • demonstration measurement • zero span function on Spec-- Adjacent Channel Power trum Analyzer (ACP) performance vs. Vector Signal Analyzer Modulation Quality Measurements • Principles of operation delav • EVM/Distortion of digital • EVM/Distortion due to L0 signal due to power amplifier phase noise with mixer • Troubleshooting digital nonlinearity

• EVM/Distortion of digital signal due to IF filter group modulation with a Vector Signal Analyzer

Description of Bit Error Rate (BER)

Review

• RF Communication System Operation

RF Power Amplifier Techniques - including GaN plus Si & GaAs semiconductors

Course 222

•Sep 28-Oct 2, 2015 - San Jose, CA / Ali Darwish

Summary

Power amplifiers are crucially important in determining a communications system cost, efficiency, size, and weight. Designing high power / high efficiency amplifiers that satisfy the system requirements (bandwidth, linearity, spectral mask, etc.) is challenging. It involves difficult trade-offs, proper understanding of the theory, and careful attention to details. Additionally, designing, building, and testing power amplifiers usually pushes test equipment and lab components to their limits and frequently results in damage to the circuit or lab equipment. This course will examine the different aspects of this challenge with emphasis on hand-on exercises and practical tips to build power amplifiers successfully.

This course will give special attention to GaN power amplifiers, the latest arrival on the power amplifier scene. Differences between GaN pHEMT, Si LDMOS, and GaAs MESFETs will be discussed.

• Load-pull characterization

Device characteristics and

• Dependence of transistor

parameters on drive level.

• Power Amplifier biasing.

signal model generation.

Limitations, and Examples.

• Comparison of various class-

es: efficiency, output power,

• Doherty power amplifiers:

Concept, Design, Limitations,

• GaN pHEMT power amplifiers

• Exercise: High efficiency

power amplifier design.

and frequency limitations.

• Effects of knee voltage, harmonic terminations, and

and Examples.

nonlinearities.

• Exercise: GaN pHEMT small

• Large signal models.

of devices.

non-idealities.

Students are encouraged to bring their laptop computers to

Outline

Day One

Power amplifier Fundamentals

• Device technologies: GaAs, LDMOS, GaN, Si, SiGe.

- Small signal model generation, transistor speed (ft, and fmax) calculation.
- Power Amplifier Stability: even mode, odd mode.
- Optimum power load estimation, calculation, and simulation.

Day Two

Conventional and High Efficiency Amplifier Design

- Power amplifier classes A, B, AB, C, and D; concepts,
- designs, and examples.
- Waveform engineering for maximum efficiency.
- Envelope Tracking

• Class E Switching mode power amplifiers: Concept, Design, Limitations, Maximum Frequency, Exercises, and Examples.

• Class F (and F-1) power amplifiers: Concept, Design,

Day Three

Linearization Techniques and Signal Modulations

class. CAD software will be used to simulate design examples. The design software available for use in this public course is from NI (formerly AWR).

Learning Objectives

Upon completing the course the student will be able to:

- •Learn the advantages and limitations of various technologies. •Gain an understanding of the pros and cons of various classes operations.
- •Learn how to characterize device for power amplifier design.
- •Acquire design know-how of high efficiency amplifiers.
- •Attain practical knowledge on the design of linear amplifiers. •Calculate the lifetime of power amplifiers in packaged and
- unpackaged assemblies.

Target Audience

Microwave engineers who want to design, fabricate, and test power amplifiers, in the 1-50 GHz frequency range, will benefit from this comprehensive design course. Basic knowledge of microwave measurements and transmission line (Smith Chart) theory is assumed.

- Classical Modulation
- schemes: AM, FM, PM.Modern Modulation: FSK,
- PSK, MSK, BPSK, QPSK,
- ?/4-DQPSK, OQPSK, QAM, etc.
- Distortions in power ampli-
- fiers.Harmonic balance and time
- domain simulations.
- Linear/Non-linear Memory effects; electrical and thermal memory effects.
- Measures of Distortion: Day Four

Power Combing, Packaging, and Reliability

• Multistage amplifiers, inter-• Package design. stage matching. • Thermal management and • Push-pull, Balanced amreliability calculations. plifiers, and Traveling Wave • Biasing and transient con-Combiners. siderations. • Power combining tech-• Exercise: calculating reniques. guired biasing for 20+ year • Exercise: Design of a power lifetime. combiner. **Dav Five**

Day Five

 Hands-on Implementation
 Detailed hands-on design using NI Microwave Office [®] tools. ACPR, NPR, M-IMR. • X-parameters.

Third order intermodulation,

- Linearization techniques: Feed Forward, Predistortion, LINC, Cartesian Feedback, Reflect Forward, Envelope Elimination and Restoration, Cross Cancellation.
- Comparison of Linearization Techniques.
- Real world design examples, challenges, and solutions.

• Translating the concepts learned into actual designs including device selection

based on specifications, circuit • Exercise: Design of class AB topology, simulation, and layout

- amplifier, from start to finish.Exercise: class-F amplifier

design

• Simulations of power added efficiency (PAE), linearity

RF Productivity: Core Analytical Tools Course 250

Summary

This course is the first in a series for RF production engineers, technicians and other professionals in the wireless field. It presents the key analytical tools necessary for working with RF technology, such as the dB scale, impedance matching with the Smith Chart, and S-parameters.

The material covered forms the foundation for follow-on courses dealing with specific RF and Microwave productivity skills and test/measurement.

This seminar contains material typically covered in one full day of instruction but is divided into five 90 minute webclassroom presentations.(9:00am to 10:30am Pacific time) This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.

Learning Objectives

Outline

Analytical Tools

Wave Parameters	
 Amplitude definitions 	 wavelength
• frequency	• phase
Propagation and Fading	
 energy spread 	• multipath
 mean path loss 	
dB Notation	
 the decibel system 	intuitively
 arithmetic in dB 	 dBm, dBW scales
 approximating dB values 	
Complex Numbers and Impedances	
 AC circuit theory 	• complex number arithmetic
 rectangular and polar coor- 	 complex impedance system
dinates	• complex admittance system
Resonance and Parasitics	
 resonance 	• example: effect of inductive
 inductive and capacitive 	self-reactance
reactances	• Q-factor
 complex series impedance 	 resonance
 complex parallel admittance 	
Transmission Lines	
• RF wave impedance	• input impedance
• transmission line definition	• special cases
characteristic impedance	– half-wavelength
• transmission line types	– quarter wavelength
• effective dielectric constant	• 5% rule
• waveguide	• lumped elements vs. trans-
 electrical length 	mission lines

Upon completing the course the student will be able to:

- •work natively with dB values (without using a calculator)
- •understand basic wave parameters and propagation
- •appreciate the effects of parasitics on component behavior
- •understand the effects of mismatches at RF
- •create basic matching networks using the Smith Chart
- •describe basic transmission line structures and input impedance
- •interpret S-parameters from measurements and datasheets

Target Audience

This course is ideally suited for production engineers and technicians who are new to the RF/wireless field. It is also suitable for those who have been working in the field but who have not had a formal introduction to the key concepts that form the basis of understanding and troubleshooting wireless systems. The course is intended to improve your technical proficiency without delving into design-level details and methods.

Mismatch and Reflection

 underlying cause of reflections reflection coefficient 	SWRreturn lossmismatch loss
 impedance and reflection coefficient development of the Smith Chart impedance and admittance Smith Charts impedance matching with S-Parameters 	 the Smith Chart Q on the Smith Chart broadband match transmission lines matching with transmission line stubs
 matrix representations S-parameter definition N-port S-parameters differential/mixed mode S-parameters 	

RF Productivity: Signals and Propagation

Course 255

Summary

This course has been designed for applications, production, manufacturing engineers and technicians as well as other professionals who need to have a solid background in the fundamentals of working with RF and wireless products. This course is part two of a four part program that provides a thorough understanding of RF analytical tools, communications signals, RF devices and test instruments. Signals and modulation formats are described in this session along with propagation fundamentals.

The course consists of pre-recorded lectures followed by online exercise workbooks. Q&A forums are also available. Students have six weeks to complete the material.

Learning Objectives

Upon completing the course the student will be able to:

Outline Part 2 - Signals and Modulation Modulation	
• Analog	– PSK
– AM, FM	– QAM
 IQ Modulation 	
Multiple Access Techniques	
• FDMA	• CDMA
• TDMA	• OFDMA
Performance of RF Components with	Digital Signals
• digital modulation funda-	compression and AM to PM
mentals	• EVM due to group delay
• adjacent channel power ACP	• EVM due to phase noise
• error vector magnitude EVM	• IQ modulator troubleshoot-
• EVM due to power amplifier	ing with the VSA
Description of Bit Error Rate	-

•describe the modulation formats used to impress information onto the RF carrier

•understand the basic principles of multiple access techniques such as TDMA, CDMA, OFDMA

Target Audience

Prerequisite: RF Productivity: Analytical Tools course or equivalent experience is assumed prior to taking this course. This program is ideally suited for applications, manufacturing and production engineers or technicians who are new to the RF/wireless field. It is also suitable for those who have been working in the field but who have not had a formal introduction to the key concepts that form the basis of understanding and troubleshooting wireless systems.

RF Productivity: Test Equipment Course 256

Summary

This course has been designed for applications, production, manufacturing engineers and technicians as well as other professionals who need to have a solid background in the fundamentals of working with RF and wireless products. This course is part three of a four part program that provides a thorough understanding of RF analytical tools, communications signals, RF devices and test instruments. Specialized test and measurement equipment for RF and wireless such as spectrum and network analyzers are described.

The course consists of pre-recorded lectures followed by online exercise workbooks. Q&A forums are also available. Students have six weeks to complete the material.

Learning Objectives

Upon completing the course the student will be able to:

Outline

Part 3 - Test Equipment

Cables and Connectors	
• cable and connector care	 connector types
Vector Network Analyzer	
 directional couplers 	 calibration
 basic block diagram 	 basic measurement setup
Spectrum Analyzer	
• time domain vs. frequency	 basic block diagram
domain	 typical measurements
Signal Generator	
 basic block diagram 	
Power Meters	
 power detection 	
Noise Figure Meter	
Vector Signal Analyzer	
 basic introduction 	
Measurement Uncertainties	
• mismatch uncertainty	 VNA calibration
• systematic errors in VNA	• instrument-generated dis-
measurements	tortion products

•describe the basic function of spectrum analyzers, vector network analyzers, and power meters

•know the limitations on accuracy/uncertainty that affect all RF and high frequency measurements

Target Audience

Prerequisite: RF Productivity: Analytical Tools, Signals and Propagation courses or equivalent experience is assumed prior to taking this course.

This program is ideally suited for applications, manufacturing and production engineers or technicians who are new to the RF/wireless field. It is also suitable for those who have been working in the field but who have not had a formal introduction to the key concepts that form the basis of understanding and troubleshooting wireless systems.

Measurements of Non-connectorized devices

- de-embedding
- alternate calibration types:
- TRL
- fixturing

RF Productivity: Wireless/Radio System Components

Course 257

Summary

This course has been designed for applications, production, manufacturing engineers and technicians as well as other professionals who need to have a solid background in the fundamentals of working with RF and wireless products. This course is part four of a four part program that provides a thorough understanding of RF analytical tools, communications signals, RF devices and test instruments. A basic block diagram of a transmitter/receiver chain forms the backbone of the course outline. Each component is described, and the relative performance parameters defined. Key impairments are introduced as they become relevant to the operation of the system. Basic system calculations are covered.

The course consists of pre-recorded lectures followed by online exercise workbooks. Q&A forums are also available. Students have six weeks to complete the material.

Learning Objectives

Outline

Part 4 - System Components

Phase Locked Oscillator	
 principles of operation phase noise measurement techniques Upconverter 	 impacts of phase noise on sytem performance
 modulation basics principles of operation 1 dB compression point for Power Amplifier 	active devices • output spectrum of upcon- verter
 principles of operation 1 dB compression point, saturation Antennas 	 AM to PM distortion harmonics
• description of antenna types Filters	• dBi, dBd gain parameters
 common filter types Butterworth, Chebychev, Gaussian transfer function Noise and Noise Figure 	inband lossmatchbandwidthgroup delay
 definition of thermal noise definition of noise figure techniques for measuring Low Noise Amplifiers 	noise figure – Y-factor technique – cold-source
 principles of operation noise figure intermodulation products Mixer	 S-parameters input vs. output match 1 dB compression point

Upon completing the course the student will be able to:

•describe the operation of the main components of an RF transceiver system

•interpret key performance parameters such as P1dB, IP3, noise figure, etc.

Target Audience

Prerequisite: RF Productivity: Analytical Tools, Signals and Propagation, Test Equipment courses or equivalent experience is assumed prior to taking this course.

This program is ideally suited for applications, manufacturing and production engineers or technicians who are new to the RF/wireless field. It is also suitable for those who have been working in the field but who have not had a formal introduction to the key concepts that form the basis of understanding and troubleshooting wireless systems.

 principles of operation Intermodulation products 	• image noise from LNA
• how intermodulation prod- ucts are produced Overall Receiver Performance	 definition of IP3 definition of IP2
 typical overall receiver per- formance cascaded noise figure, IP3 SFDR Spur Free Dynamic Range 	

RF Technology Certification

•Jun 22-Nov 23, 2015 - Web Classroom, WebEx / Rex Frobenius

Summary

This online program has been designed for applications, production, manufacturing engineers and technicians as well as other professionals who need to have a solid background in the fundamentals of working with RF and wireless products. This four part program provides a thorough understanding of RF analytical tools, communications signals, RF devices and test instruments. Starting with basic analytical tools such as the decibel scale, S-parameters and the Smith Chart, this program covers test instrumentation, RF components, and modulation. A basic block diagram of a transmitter/receiver chain forms the backbone of the course outline. Each component is described, and the relative performance parameters defined. Key impairments are introduced as they become relevant to the operation of the system. Basic system calculations are covered, as well as modulation formats and multiple access techniques. The program consists of four online sessions spread out over a six month period. Each five to six week session consists of pre-recorded self-paced lectures combined with a live one to two hour Q&A/tutorial webcast with the instructor as well as forums. Each session has a brief test as well. The program is equivalent to approximately 40 hours of training. After finishing the program students will receive a signed certificate of completion.

Learning Objectives

Upon completing the course the student will be able to:

Outline Part 1

Tarti	
Analytical tools	
 wave parameters 	 transmission lines
• dB & dBm	 device parasitics and their
 mismatches and reflection 	effects
 impedance matching and 	 S-parameters
the Smith Chart	
Part 2 - Signals and Modulation	
Modulation	
• Analog	– PSK
– AM, FM	– QAM
 IQ Modulation 	
Multiple Access Techniques	
• FDMA	• CDMA
• TDMA	• OFDMA
Performance of RF Components with	Digital Signals
• digital modulation funda-	• EVM due to power amplifier
mentals	compression and AM to PM
• adjacent channel power ACP	• EVM due to group delay
• error vector magnitude EVM	• EVM due to phase noise

- •work natively with dB values (without using a calculator)
- •understand basic wave parameters and propagation
- •appreciate the effects of parasitics on component behavior
- •understand the effects of mismatches at RF
- •create basic matching networks using the Smith Chart
- •describe basic transmission line structures and input impedance

interpret S-parameters from measurements and datasheets
describe the basic function of spectrum analyzers, vector network analyzers, and power meters

•know the limitations on accuracy/uncertainty that affect all RF and high frequency measurements

•describe the operation of the main components of an RF transceiver system

•interpret key performance parameters such as P1dB, IP3, noise figure, etc.

•describe the modulation formats used to impress information onto the RF carrier

•understand the basic principles of multiple access techniques such as TDMA, CDMA, OFDMA

Target Audience

This program is ideally suited for applications, manufacturing and production engineers or technicians who are new to the RF/wireless field. It is also suitable for those who have been working in the field but who have not had a formal introduction to the key concepts that form the basis of understanding and troubleshooting wireless systems.

• IQ modulator troubleshoot- Description of Bit Error Rate	ing with the VSA
Part 3 - Test Equipment	
Cables and Connectors	
 cable and connector care 	 connector types
Vector Network Analyzer	
 directional couplers 	 calibration
 basic block diagram 	 basic measurement setup
Spectrum Analyzer	
 time domain vs. frequency 	 basic block diagram
domain	 typical measurements
Signal Generator	
 basic block diagram 	
Power Meters	
 power detection 	
Noise Figure Meter	
Vector Signal Analyzer	
 basic introduction 	
Measurement Uncertainties	
 mismatch uncertainty 	 systematic errors in VNA

measurements	 instrument-generated dis-
 VNA calibration 	tortion products
Measurements of Non-connectorized	d devices
• de-embedding	TRL
• alternate calibration types:	• fixturing
Part 4 - System Components	
Phase Locked Oscillator	
 principles of operation 	– impacts of phase noise on
• phase noise	sytem performance
– measurement techniques	
Upconverter	
 modulation basics 	active devices
 principles of operation 	 output spectrum of upcon-
• 1 dB compression point for	verter
Power Amplifier	
 principles of operation 	 AM to PM distortion
 1 dB compression point, 	 harmonics
saturation	
Antennas	
• description of antenna types	 dBi, dBd gain parameters
Filters	
 common filter types 	 inband loss
– Butterworth, Chebychev,	• match
Gaussian	 bandwidth
 transfer function 	 group delay
Noise and Noise Figure	
• definition of thermal noise	noise figure
• definition of noise figure	– Y-factor technique
 techniques for measuring 	– cold-source
Low Noise Amplifiers	
 principles of operation 	• S-parameters
noise figure	– input vs. output match
• intermodulation products	• 1 dB compression point
Mixer	
 principles of operation 	 image noise from LNA
Intermodulation products	
how intermodulation prod-	• definition of IP3
ucts are produced	 definition of IP2

Overall Receiver Performance

- typical overall receiver per-formance
- cascaded noise figure, IP3
 SFDR Spur Free Dynamic

Range

RF Wireless System Design Fundamentals

Course 063

Summary

This three-day course combines theory with real-life examples to provide participants with a complete foundation in digital communication techniques and their effects on RF circuit parameters, to help them

close the gap between traditional RF engineering design and the needs of modern communication systems.

Learning Objectives

Upon completing the course the student will be able to:

• State digital wireless communication system concepts and performance limitations.

Outline

••••••	
Day One	
RF Wireless Services	
 Cellular telephone 	systems
 Personal communications 	 Market overview
System Design Fundamentals	
 Historical development of 	 methodologies
radio receiver architectures	– Eb/No vs. SNR
 Digital wireless communica- 	– BER vs. noise
tion requirements	 bandwidth limitations
RF System Design Considerations	
 Noise figure 	(third order intercept point
• Receiver sensitivity, desensi-	IP3)
tization and blocking	 Power output and spectral
 Dynamic range 	efficiency
 Intermodulation distortion 	 System limitations
Day Two	
RF Components Requirements for W	ireless Systems
 PLL noise (dBc/Hz, RMS) 	mum noise performance
 Fractional dividers (phase 	• Effect of phase noise in RF
noise improvement)	communications
 Loop bandwidth for opti- 	
Modulators	
 Digital modulation tech- 	 power efficiency vs. spec-
niques	tral efficiency
– BPSK	 linear amplification
– QPSk	requirements
– OQPSK	
Mixers	
 Properties and characteris- 	– L0/IF isolation
tics	– distortion
 conversion gain/loss 	 power consumption
– noise figure	 Mixer comparison table
– RF/IF isolation	

- Analyze system degradation due to RF components.
- Develop wireless communication system budget profiles.
- Calculate propagation lossess and link budgets.
- Assess cost vs. performance issues.

•Evaluate the performance of differing RF wireless system architectures.

Target Audience

Professionals required to work in high frequency domains for the first time, as well as seasoned veterans, will benefit from this comprehensive overview of practical design techniques. An electrical engineering background (BSEE or equivalent practical experience) is recommended, as well as a familiarity with complex numbers.

Amplifiers • Large signal - power output vs. efficiency - gain and phase requirements - nonlinearity issues Day Three Filters	(EVM) – intermodulation distor- tion (IMD) – spectral regrowth • True dynamic range
 Terminology Types Responses Amplitude/Phase distortion Antenna Types 	(group delay) • Design fundamentals • Effect of distortion and drift in RF communication systems
Systematic Analysis of Transceiver I	Design
 Specifications Block diagrams Propagation Losses 	• Small signal analysis (bud- get profile)
 Free space path loss Reflection and scattering loss Multipath Rayleigh fading models 	

Semiconductor Device Physics for RF Design

Course 183

Summary

This course provides microwave circuit designers with an in-depth look at their "toolkit" of semiconductor devices. Starting with a brief look at quantum mechanics, the course develops a picture of how electrons behave in semiconductor materials. This is applied to functional descriptions of the basic semiconductor devices: the P-N junction, the bipolar transistor and the FET. Further material describes how properties of different semiconductor materials and the ability to create certain material structures leads to the large variety of modern devices, each with its own characteristics, advantages and disadvantages. A final section describes principals of semiconductor fabrication and how limitations in materials and fabrication lead to limitations in performance and repeatability of microwave devices.

Learning Objectives

Outline

Day 1: Electrons and Holes in Semiconductors

- Quantum Mechanics

 Schroedinger's Wave
 Equation and energy levels
- Band Theory of Solids

 Valence and conduction energy bands, Fermi-Dirac distribution, generation and recombination, intrinsic carriers, direct and indirect materials
- Doping in Semiconductors - Donor and acceptor

Day Two: PN Junctions

- PN junction at equilibrium

 depletion region, built-in potential, band curvature
- PN junction at forward bias
 - minority injection, dif-

levels, Fermi Level, Law of Mass ActionAdvanced Concepts (as class

interest dictates) – *k-space, density of states,*

effective mass, Brilloun zones

 Carrier Transport

 Drift and mobility, excess carriers and diffusion, Carrier Continuity Equation, concept of a plasma

fusion current, Law of the Junction, Carrier Continuity and diode I-V relation

- Circuit properties - junction capacitance and
- conductance
 Schottky diodes

 M-S junction, switching
 - speed, reverse leakage

Upon completing the course the student will be able to:

- Describe the significance of energy bands for the conductivity of semiconductors
- Visualize the operation of diode rectifiers, bipolar transistors and FETs in terms of drift and diffusion of charge carriers.
- Identify the structures and microwave applications of GaAs FETs, HEMTs, and HBTs.
- Understand the MMIC fabrication process in overview.
- List major factors and failure mechanisms that limit device performance.

Target Audience

Circuit engineers and engineering managers who can benefit from a deeper understanding of the devices they use in design and/or manufacture of microwave products. Familiarity with undergraduate Physics, Electromagnetics and Calculus is strongly recommended.

Day 3: Bipolar Transistors and FETs Transistor Structure

- SiGe, HEMT, HBT

tion, Epitaxial Growth

- Diffusion, Ion Implanta-

Device Fabrication

Fabrication Issues

 BJT in Saturation bias state, Carrier Continuity in base, injection efficiency, Beta Other effects in BJTs base width modulation and the Early Effect, doping gradients Circuit properties of BJTs small signal model with Device Materials 	 major and secondary effects, intrinsic and extrinsic elements FET basics Gradual Channel Approximation and Threshold Voltage Microwave FET Structures Short channel effects and Schottky gate
 Characteristics of Microwave Materials Silicon, GaAs, InP Hybrid Materials and Special Transistor Structures 	 Parasitic Transistors and latchup, traps, surface states, hydrogen poisoning

UN The Worldwide Leader in RF & Wireless Training

Signal Integrity and EMI Fundamentals Course 243

Summary

This course covers the methodology of designing an electronic product to minimize the possibilities for electromagnetic interferences (EMI) and signal integrity (SI) problems. The techniques are useful specially for designers of high speed digital and analog circuits, and radiofrequency designers. The basics of designing electronic products with SI and EMI in mind are introduced in a very understandable and entertained style. This is a three day course with a very practical approach through many real world examples, techniques, simulation and hardware demos.

First, the basics of EMI and SIGNAL INTEGRITY in electronic circuits including a review of components in the high frequency/speed domain are presented. The typical EMI/SI problems (crosstalk, reflections, coupling mechanisms, radiation, pickup, etc.) are discussed in a general perspective. Transmission lines and impedance matching are covered because of the importance in the design of a robust system as explained in the rest of the course.

Second, GROUNDING, FILTERING and the design techniques for PRINTED CIRCUIT BOARDS (PCBS) in high frequency/speed systems are covered.

Finally, CABLES, the longest elements in our designs are discussed. They are key elements in the signal propagation and antenna effects of any electronic design. A general and intuitive explanation of antenna fundamentals is included for non RF specialists explaining in a very intuitive way the radiation and pick-up behaviour of cables as "hidden antennas." Finally

Outline

Day One	
Fundamentals	
 Electrical signals 	 Bandwidth
• Maxwell vs. Kirchhoff: limits	• Impedance matching defini-
of circuit theory	tion
 Decibel and logarithmic 	 Frequency vs. dimensions
scales	(size)
• Spectrum of a signal: time	• Time vs. distance
domain vs. frequency domain	 Scattering parameters (s-
• Resonance	parameters)
• Quality factor (Q) both	• Typical formats and how to
loaded and unloaded	measure them
High speed/frequency effects in ele	ctronic circuits: when a capacitor is
an inductor	
• High speed and RF effects:	dt)
attenuation, gain, loss and	 Controlling signal return
distortion	currents, differential vs. com-
• Skin effect, return current	mon mode currents
and parasitic effects	 Non ideal components
• The importance of rise time	 Introduction
and fall times (dv/dt and di/	 The "hidden schematic"

instrumentation and measuring and troubleshooting techniques for EMI/SI problems are included.

No prior EMI/SI knowledge is needed but an electrical engineering background (BSEE or equivalent experience) is recommended.

Learning Objectives

Upon completing the course the student will be able to:

•understand the basics and fundamentals of EMI and SIGNAL INTEGRITY (SI) issues.

•look at the high frequency fundamentals of EMI/SI, modelling the problems to be able to propose solutions.

locate and fix EMI/SI problems in a product or installation.
design electronic equipment to avoid common EMI/SI failures.

•use lab measurements and tools to find or fix typical EMI/SI problems.

•reduce time and cost of EMI/SI diagnostic and fixes.

Target Audience

•Design engineers/technicians from the electronics industry involved in EMI and SIGNAL INTEGRITY (SI) problems.

those interested in a working knowledge of EMI/SI engineering principles and concerned with EMI/SI problems as high speed digital designers, RF designers and PCB layout engineers.
managers responsible for design, production, test and marketing of electronic products.

•marketing engineers who need a general and practical knowledge of the EMI/SI basics.

	concept – <i>Resistors, capacitors and</i>	basicsPCB structures (dielectric
th	inductors	materials, structures, dissipa-
ce matching defini-	– Ferrites – Transformers	tion factor, the multi-layer structure idea)
y vs. dimensions	– Diodes	 Transmission lines basics
	– Transistors	 Lumped vs. distributed
distance	– ICs	systems
g parameters (s-	 Digital and high speed cir- 	 Vias (effects and modelling
)	cuit key parameters	in high frequency)
ormats and how to	 power, speed and package 	 Shielding basics
em	• Wires	• Clocks
s: when a capacitor is	 Cables and connections 	
	Transmission lines: controlling propa	agation
	 Wiring and connecting com- 	tion
ng signal return	ponents	 Modelling a transmission
ifferential vs. com-	 limitations for high 	line
currents	frequency and high speed	 Characteristic impedance
l components	systems	 Velocity of propagation
tion	 What is a transmission line? 	 description of typical trans-
den schematic"	 Motivation: signal propaga- 	mission lines

 coax, pairs, microstrip and stripline Reflection coefficient Standing wave ratio (SWR, Matching: Avoiding reflections. Obta Maximum transfer of power and avoiding reflections Matching with LC compo- nents Matching networks: L, PI and T networks Matching in narrow and broadband networks Matching with transformers Day Two Signal Integrity Parameters 	 VSWR and ISWR) and Return loss Intuitive explanation Examples from real world aning maximum power transfer Matching with transmission lines Terminations to avoid SI/ EMI problems: solutions and techniques Using software to design a matching network Examples from real world 	 Basic ideas Design strategy Partitioning and critical zones PCB structures dielectric materials, structures, dissipation factor Choosing the PCB structure: how many layers and distribution Power planes design and distribution Layout and routing (1, 2 and multilayer) techniques traces microstrip and stripline 	 transmission line effects and solutions Ground planes Splits or ground discontinui- ties in planes (slots) Decoupling and bypass (how, where, resonances, etc): discrete capacitors vs. embed- ded techniques in high speed/ RF designs Crosstalk and guards How ground plane layout affects crosstalk Mixed signal PCBs (A/D designs) Controlling clock waveform
 What is Signal Integrity (SI) in electronic circuits? undesired effects Propagation time and delay Reflections and ringing Inductive vs. capacitive 	 crosstalk (near and far) Delays Jitter Ground bounce Power supply noise High frequency, dv/dt and 	 corners vias controlling impedance for SI Day Three Cables 	 Clock distribution Clock shielding Examples from real world
coupling	di/dt	• Basic ideas for cable funda-	• Parasitics in connectors for
 Grounding: the most important subj Signal ground vs. safety 	ance	mentalsThe control of return cur-	 high speed signals Avoiding crosstalk and re-
ground • Ground in high frequency/ speed applications - low impedance path • Minimizing ground imped- Filtering	 Common impedance Ground strategies (single point, multipoint, and hybrid) Ground loops 	rent • Types of cables (wires, twisted pairs, coax, shielded cables, ribbon cables, etc.) • Cable impedance • Shielded cables and cable	flections in cables (layout and terminations) • Avoiding common imped- ance in cables • Reducing emissions and pick-up in cables
 Basic ideas Filters for known impedances (no FMI applications) 	 Parasitic and location effects Filtering with ferrites Saturation and undesired 	grounding Connectors Measuring and Troubleshooting Tech	• Examples from real world
Basic design techniques	coupling effects	Antenna basics	niques
with examplesFilters for EMI/EMCHow filters work: reflection	 Decoupling and bypass fun- damentals Damping resonances and 	• How to measure EMI and SI effects - tools instruments and	 Measuring high frequency current in electronic circuits Diagnostic and troubleshoot-
 vs. dissipation Insertion losses Source and load influence Printed Circuit Boards (PCBs) 	Three terminal and feed through components	 <i>techniques</i> Scope and probe limitations Review of some typical errors in measurement tech- 	 Ing techniques and hints Locating EMI sources with near field probes

Printed Circuit Boards (PCBs)

The Radio Modem: RF Transceiver From Antenna to Bits and Back

Course 241

•Sep 28-Oct 2, 2015 - San Jose, CA / Waleed Khalil

Summary

Over the past two decades, there has been a significant increase in the complexity of RF technology to meet the growing demand for fixed and mobile communication systems. Moving forward, we expect this trend to continue with emerging cellular and wireless standards employing complex modulation schemes and occupying higher bandwidth while emphasizing stringent spectrum efficiency requirements. These advances call for employing sophisticated design principles at both the circuit and system levels and hence the need for a comprehensive understanding of the radio modem.

This course is intended for design, application and test engineers as well as technicians interested to learn about the system aspect of the radio design space covering the entire signal chain from antenna to bits and back. The aim is apply intuitive system design methods to dissect the radio modem at RF, analog and digital domains with emphasis on: a) physical understanding of the interaction between components and different radio architectures and b) quantitative performance evaluation using simple hand calculations and simulation. Throughout the course, students will be exposed not only to theoretical analysis but also to concrete examples of radio architectures from existing commercial systems (GSM, WCDMA, 4G LTE, WLAN, Bluetooth and WiMAX). Towards the end of this course, students will build -using commercial system design software- a simple but powerful full radio transceiver system (including both digital transmitter and receiver blocks) and simulate end-to-end metrics such as bit error rate (BER), error vector magnitude (EVM) and spectrum emission. Students are encouraged to bring their laptop computers to class. The design software available for use in this public course is from NI (formerly AWR).

Upon completing the course the student will be able to:

•Gain in-depth understanding of the different block-level specifications and impairments (e.g. noise, P1dB, IIP3, IIP2, gain, bandwidth, phase noise and spurs) and how to relate them to system level performance metrics (e.g. BER, EVM, modulation type, blocker performance, sensitivity and selectivity) •Analyze and abstract (at block level) the most critical blocks

•Analyze and abstract (at block level) the most critical blocks in today's RF modem (e.g. low noise amplifier, mixer, voltagecontrolled oscillator, power amplifier and analog and digital baseband circuits such A/Ds, D/As and filters).

•Evaluate the impact of different impairments in radio frontends on performance, including interference, different noise sources, circuit nonlinearity and phase noise.

•Understand the trade-offs between block-level performance, choice of radio architecture and overall system performance (e.g. power, area and cost) in relation to a given communication standard

•Learn the major aspects of the digital signal processing chain at both the modulation and demodulation ends

•Use simple back-of-the-envelope calculations and understanding of path loss and fading to predict RF system's performance in terms of link budget and link margin.

•Traverse between block level specifications and overall system performance and backwards

•Design and simulate (at block level) a full modem including RF, analog and digital components.

•Tie between system level performance parameters and test equipment specifications

•More...

Target Audience

RF and baseband IC engineers, system architects, test engineers, product engineers and technicians. Technical managers who would like to get exposure to RF system technology.

beam-width

- directivity and gain

Learning Objectives

Outline

Day One

RF Basics	
 dB units dB, dBm, dBW, dBV, dBHz, dBK and dBc voltage and power gain transmission line properties Radio Propagation 	 (RL and VSWR) S-parameters Matching and power transfer amplifiers and attenuators cascaded gain
 free space line of sight (LOS) propagation atmospheric losses Antennas 	NLOS propagationmultipath and fadingpath loss calculation
antenna typescircuit model	 antenna parameters impedance

– efficiency

- bandwidth
- pattern

Day Two

Noise• noise sources• sensitivity• noise in passive networks• link budget• noise representation in time
and frequency domains• combining noise sources
• spectrum analyzer• noise figure• noise temperature• cascaded noise figure analy-
sis• attenuator NFDistortion•

• harmonic generation vs. Intermodulation

 2nd order distortion single tone and two tone analyses and filtering 3rd order distortion single tone and two tone analyses and filtering gain compression receiver desensitization and blocking Day Three Mixers 	 Calculations P1dB IM2 IP2 IM3 IP3 Cascaded IIP3 spurious free dynamic range (SFDR)
 selectivity vs. sensitivity mixer types block vs. channelized conversion the image problem Modulation complex vs. real signals properties of complex sig- Day Four Digital Modulation 	nals • frequency • phase and time representa- tion of complex signals • noise types • frequency and time domain representation of AWGN
 channel parameters and capacity limits constellation diagrams (IQ and polar representation) quadrature modulation analog modulation types AM, FM and PM digital modulation schemes ASK, OOK, BPSK, QPSK, QAM, BFSK noise performance spectrum limitation digital pulse shaping Day Five Phase Noise	 ISI spectrum efficiency raised and root-raised cosin filtering Gaussian filter digital modulation: step-by-step Aerial Access: multiple access vs. duplexing time and frequency duplexing multiple access techniques <i>FDMA</i>, <i>TDMA</i>, <i>CDMA</i>
 phase noise vs. jitter phase noise definition PSD of voltage and phase signals phase noise measurement techniques Transceiver Architectures Heterodyne receiver 	 RMS phase error and EVM Impact of RMS phase error on BER impact of far-out phase noise on receivers and trans- mitters guadrature mixing and DC
 image reject filter image reject receiver image rejection ratio 	 offset transmitter architectures <i>spectrum mask, ACI, EVN</i>

• Homodyne receiver

- cosine
- p-by-
- ac-
- olex-
- ues
- Μ
- ror
- ins-
- DC
- es
 - EVM

Transceivers Case Studies

- cellular radio evolution and
- frequency bands
- transmit and receive impairment case studies

Transceiver and Systems Design for Digital Communications Course 208

Summary

This seminar provides an intuitive approach to transceiver design for both commercial and military sectors, allowing a broad spectrum of readers to understand the topics clearly. It covers a wide range of data link communication design techniques, including link budgets, dynamic range and system analysis of receivers and transmitters used in data link communications, digital modulation and demodulation techniques of phaseshift keyed and frequency hopped spread spectrum systems using phase diagrams, multipath, gain control, an intuitive approach to probability, jamming reduction method using various adaptive processes, error detection and correction, global positioning systems (GPS) data link, satellite communications, direction-finding and interferometers, plus a section on broadband communications and home networking including Link 16, JTRS, military radios, and networking. Also included is a section on Cognitive Systems. Various techniques and designs are evaluated for modulating and sending digital data. Thus the student gains a firm understanding of the processes needed to effectively design wireless data link communication systems. Students will receive a copy of the instructor's textbook, Transceiver and Systems Design for Digital Communications, 3rd Edition.

Learning Objectives

Upon completing the course the student will be able to:

•Perform link budgets for communication links including spread spectrum, system design tradeoffs, BER, Eb/No, EIRP, free-space loss, process gain, coding gain and link margin. Evaluate the performance of different types of wireless communication transceivers including PSK, FSK, MSK, QAM, CP-PSK, PRS code generator, multiple access techniques, TDMA, CDMA, FDMA, PAs, VSWR, LOs, and sideband elimination •Analyze and understand different communication methods including spread spectrum modems using maximum power transfer principle, digital versus analog, SDRs and cognitive radios, multiple access systems, OFDM, and error detection/ correction, Gold codes, maximal length sequence codes, code taps, jamming margin, power control, time hopping, chirped-FM, spectral regrowth, and shaping filters

•Understand superheterodyne, dynamic range, 2-tone DR, SFDR, IMDs, phase noise, group delay and compensation, sampling theorem and aliasing, and DSPs

•Analyze and model AGC systems using control theory, loop

Outline

Day One

Transceiver Design and Link Budget

• Signal Frequency of Operation

- Link Budget
- Power in dBm

filters, integrator for zero steady state error, and PLL/AGC commonalities

•Understand demodulation techniques, matched filter, correlators, PPM, coherent vs differential, carrier recovery loops, Costas and squaring loops, symbol synchronizer, eve pattern, ISI, scrambler/descrambler, and Shannon's limit

•Understand basic probability and pulse theory, gaussian process, quantization and sampling errors, probability of error, probability of detection and false alarms, error detection and correction, CRCs, FECs, interleaving, linear block codes, hamming, convolutional, turbo, and other codes, viterbi decoder. and Multi-h

•Understand multipath and techniques on how to reduce multipath and jammers, specular and diffuse, mitigation techniques, and antenna diversity

•Analyze techniques to reduce jammers using burst clamps. adaptive filters, GSOs, and evaluate intercept receivers

•Understand GPS and the data link used for sending information, how to mitigate errors using different techniques, narrow correlator, SA, differential, relative, KCPT, and other satellite positioning systems

•Understand satellite communications and the uses, and evaluate data links for G/T, ADPCM, geosynchronous, geostationary, antennas, FSS, propagation delays, cost and regulations, and types of satellites

•Understand the techniques used for broadband communications in both commercial and military radios including mobile users, distribution, IEEE 802.xx, Bluetooth, WiMAX, networking, SDRs, JTRS, Link 16, clusters, gateways, stacked nets, and time slot reallocation

•Analyze a 3 dimension Direction Finding system using basic two antenna interferometer using direction cosines and coordinate conversions

Target Audience

This course will be of interest to RF, analog, digital, systems and software engineers and managers who are interested in the field of communications of all types of wireless systems for both commercial and military use. This applies to both those that want to gain an understanding of basic wireless communications and those that are experienced engineers that want to capture an intuitive approach to wireless data link design. An electrical engineering background (BSEE or equivalent practical experience) is recommended but not required. From this course you will learn how to evaluate and develop the system design for digital communication transceivers including spread spectrum systems and more.

- Transmitter gain and losses
- EIRP
- the Channel
- Free-Space Attenuation
- Propagation Losses
- Multipath Losses
- Receiver gain and losses
- LNA

 noise figure Eb/No coding gain The Transmitter Transmitter Basic Functions Antenna T/R PA unconversion 	 process gain link budget example spreading losses noise immunity CP-PSK spectral regrowth MSK, FSK sidelobe reduction 	 Error Detection and Correction Parity Checksum CRC Redundancy FEC Interleaving 	 Linear Block Codes Hamming Code Convolutional Codes Viterbi Decoder Multi-h Turbo codes LDPC
 Uptonversion VSWR maximum power transfer principle digital Communications Digital versus Analog Communications Software Defined Radios and Cognitive Radios Digital Modulation 	 DSSS FHSS anti-jam process gain maximal length sequence codes and taps Gold codes spectral lines time hopping chirped-FM 	 Basic Types of Multipath Specular Reflection on a Smooth Surface Specular Reflection on a Rough Surface Diffuse Reflection Curvature of the Earth Improving the System Against Jamm Burst Jammer 	 Pulse Systems (Radar) Vector Analysis Approach Power Summation Approach Multipath Mitigation Techniques Antenna Diversity
 <i>PSK, BPSK, DPSK, QPSK, OOPSK, 8-PSK, 16-QAM</i> phasor constellations and The Receiver Superheterodyne Receiver 	 multiple access techniques OFDM power control SFDR 	 Adaptive Filter Digital Filter Intuitive Analysis Basic Adaptive Filter LMS Algorithm 	 Amplitude and Phase Suppression Gram-Schmidt Orthogonalizer Basic GSO
 antennas T/R switch limiters Image Reject Filter/Band Reject Filter Dynamic Range/Minimum 	 IMDs Tangential Sensitivity LNAs multiple bands phase noise mixers 	 Digital/Analog ALE Wideband ALE Jammer Suppressor Filter Digital Circuitry Day Three Global Navigation Satellite Systems 	 Adaptive GSO Implementa- tion Intercept Receiver Compari- son
Detectable Signal Types of DR Two-Tone AGC Design and PLL Comparison AGC modeling 	 filters group delay 	 Satellite Transmissions Data Signal Structure GPS Receiver Atmospheric Errors Multinath Errors 	 Differential GPS DGPS Time Synchronization Relative GPS Doppler VCPT
 AGC Amplifier Curve Linearizers Detector Loop Filter 	 Comparison of the PLL and AGC Using Feedback Analysis Techniques Basic PLL 	 Multipath Errors Narrow Correlator SA Carrier Smoothed Code Satellite Communications 	 NCF1 Double Difference Wide Lane/Narrow Lane
 Threshold Level Integrator Control Theory Analysis AGC Design Example Modulation Frequency Dis- Day Two Demodulation Techniques 	 Comparisons of the PLL and AGC Feedback Systems and Oscil- lations 	 General Satellite Operation Frequencies Modulation ADPCM Fixed Satellite Service Geosynchronous and Geostationary Orbits 	 satellite link budget Carrier Power/Equivalent Temperature Multiple Channels in the Same Frequency Band Multiple Access Schemes Propagation Delay
 Types of Demodulation Pulsed Matched Filter Digital Matched Filter Correlator PPM Code Division Encoding and Decoding, Coherent versus 	 Costas Loop Modified Costas Loop and AFC Addition Despreading Correlator Symbol Synchronizer The Eye Pattern Digital Processor 	 Ground Station Antennas Noise and the Low-Noise Amplifier Equivalent Temperature Analysis G/T Broadband Communications and No 	 Cost for Use of the Satellites Regulations Types of Satellites Used for Communications System Design for Satellite Communications Etworking
Differential Digital Modulation and Demodulation • Carrier Recovery • Squaring Loop Basic Probability and Pulse Theory	 ISI Scrambler/Descrambler Phase-Shift Detection Shannon's Limit 	 Mobile Users Types of Distribution Methods for the Home Power Line Communications OFDM 	cations • IEEE 802.11 • Bluetooth • WiMAX • Military Radios and Data
 The Gaussian Process Quantization and Sampling Errors 100 	 Probability of Error Probability of Detection and False Alarms 	 Home Phoneline Networking Alliance Radio Frequency Communi- 	Links • JTRS • SDRs

 SCA compliance Waveforms Network Challenge Gateway and Network Configurations Link 16 Cognitive Systems 	 Link 16 Modulation TDMA "Stacked" Nets Time Slot Reallocation Bit/Message Structure 	D • • t
 Cognitive Radio Cognitive hardware and software Cognitive antennas MIMO Techniques Adaptive Power Control 	 Dynamic Spectrum Alloca- tion Adaptive Frequency Control Network Re-Configuration Multi-Hop Techniques Cognitive System Approach 	• • •

- Direction finding and Interferometer Analysis
- Interferometer Analysis
 - **Direction Cosines**
- Basic Interferometer Equa-
- ion
- Three-Dimensional Approach Antenna Position Matrix
- Coordinate Conversion Due
- o Pitch and Roll
- Using Direction Cosines
- Alternate Method

101

Wireless Circuits, Systems and Test Fundamentals

Course 112

Summary

This five day course provides engineers with the fundamental concepts needed to work effectively with high frequency wireless circuits and systems. Participants gain analytical, graphical, and computer-aided techniques to analyze, test and optimize RF circuits and systems in practical situations. The course also addresses RF measurement techniques as they apply to today's wireless products.

Learning Objectives

Upon completing the course the student will be able to:

•Describe RF circuit parameters and terminology.

•Understand the effects of parasitics on RF circuit perfor-

Outline

Day One RF Terminology		 Phase locked loop oscillators Modulators/demodulators	 Amplifiers Filters
 dB, dBm, and RF port Power-flow and traveling waves 	loss • The Smith Chart • Two terminal z- and y- pa-	Mixers Day Five RF Test Setups and Measurement Te	Attenuators chniques
 Reflection coefficient, VSWR Return loss and mismatch Day Two Optimizing RF Circuit Performance 	rameters Scattering (S) parameters 	 Wireless standards, test specifications Test equipment overview Test Measurements 	 Measurement techniques and error correction
 Conjugate impedance matching Real and complex termina- tions Bandwidth considerations Component equivalent Grounding Techniques 	circuits • Component losses and para- sitics • Test fixtures and de-embed- ding	 Noise Figure Spurious free dynamic range Sensitivity Selectivity Power Adjacent Channel Power (ACP) 	
• Printed circuit board layout issues Day Three System Design Fundamentals	Transmission line structuresTransmission line matching	 Error Vector Magnitude (EVM) BER SINAD 	
 Historical development of radio receiver techniques Digital wireless terminology Eb/No BER etc. Noise Figure Day Four	 Receiver sensitivity Desensitization and blocking Dynamic range Intermodulation distortion Overview of transceiver architectures 		

RF Component Specifications and Performance Limitations

mance.

- •Understand wireless architectures and system specifications.
- Analyze system degradation due to RF component variances.
 Understand the tradeoffs between power efficient and spectral efficient modulation techniques.

•Understand RF system test standards and measurement techniques.

•Describe test requirements needed for new wireless networks (Bluetooth, Home RF, 802.11, etc.).

Target Audience

Engineers, programmers, chip designers, and engineering managers involved in the design, planning, implementation, or testing of communication systems would benefit from this intermediate-level course. Participants should have a BSEE or equivalient.

102		

Wireless LANs Course 227

Summary

This three-day course is an experiment-oriented course that integrates topics at the MAC layer (and above) of Wireless LANs (WLANs) and Wireless Personal Area Networks (WPANs). The course emphasizes hands-on learning through experiments and case studies. It will offer attendees the ability to conduct laboratory experiments and design projects that cover a broad spectrum of issues in WLANs and WPANs. The characteristics and operations of IEEE 802.11a/b/q/n WLANs will be described as well as that of Bluetooth WPANs. Laboratory experiments will be conducted to show the tradeoffs of the virtual carrier sensing mechanism, observe interference issues with other devices operating on the ISM band, describe Mobile Ad-hoc NETwork (MANET) operations and routing protocols, configure secure infrastructure and MANET WLANs, deploy hotspots, and use modeling, simulation, and emulation tools to evaluate WLANs (including system in the loop capabilities). Real infrastructure and MANET WLANs will be deployed and configured in class under different network scenarios. Different tools and techniques will be introduced to monitor, measure, and characterize their performance (and realize the tradeoffs). Known techniques to attack WLANs will be shown and proper security practices to avoid well-known threats will be discussed. All concepts will be summed up in an experiment that aims at deploying a secure hotspot.

Outline

Day One Introduction Introduction to WLANs Getting to know your toolkit **WLAN Overview** • Wireless environment and • Hidden node problem an overview of the IEEE 802.11 • CSMA/CA family of standards • Virtual carrier sensing MAC overview • Interframe spacing • Adaptive rate control MAC backoff • Link layer positive acknowl-• Fragmentation edgements • Management operations • Frame Check Sequence • Framing Power save mode • Error recovery **Day Two WPAN Overview** Characteristics Security Modes of operation Coexistence issues with • Packet format 802.11

• Air interface

Students are encouraged to bring their laptop computers to class in order to participate in the exercises.

Learning Objectives

Upon completing the course the student will be able to:

•Describe the characteristics and operation of IEEE 802.11 WLANs and Bluetooth WPANs.

•Understand the different knobs and dials that affect performance of IEEE 802.11 WLANs and the tradeoffs of each.

•Construct and manage 802.11 WLANs (infrastructure and ad-hoc) and Bluetooth WPANs in Windows and Linux environments.

Use diagnosis tools and techniques to monitor, measure, and characterize the performance of WLANs and WPANs.
Use of network simulation tools to model and evaluate the

performance of MANETs.

•What it takes to deploy a hotspot (user access control, NATing, logging).

Target Audience

Professionals such as engineers, product developers, managers, security officers, city/state government or law enforcement professional, and network administrators who have a special interest in quickly getting up to speed with practical aspects of WLAN (infrastructure, ad-hoc) and WPAN (piconet, scatternet) management and operation.

MANETS

• Concept of operation	• OLSR
 Routing basics 	• ETX metric
• AODV	
Day Three	
WLAN Modeling, Simulation, and E	mulation
 Modeling, simulation, and 	• NS-2
emulation tools	• CORE
• OPNET IT Guru	 System in the loop
WLAN Security	
• WEP basics	 DoS against a WLAN
 Security vulnerabilities 	• Using 802.11i (WPA2)
 Breaking WEP 	
Hotspot	
 Building blocks 	
• DHCP	

• NAT

• User access control

Wireless/Computer/Telecom Network Security

Course 226

Summary

This three-day course is an experiment-oriented course that focuses on security aspects in computer and telecommunication systems. The course will cover aspects related to security policies and mechanisms, access control mechanisms (rolebased, DAC, MAC, and ORCON), data encryption standards (DES, AES, Blowfish, RC4, and PKI), key management and authentication mechanisms, digital signatures (x509), message authentication codes, malicious logic (viruses, trojan horses), IPSEC, firewalls, VPN, as well as the 5 phases of a computer security attack (attack reconnaissance, scanning, gaining access, maintaining access, and covering tracks). Experiments will be conducted to show cryptanalysis techniques, x509 certificate generation, how to configure and manipulate firewalls, and all phases of a cyber attack that end in taking control of victim machine. Experiments will also be prepared to show how to break IEEE 802.11 WEP keys, launch denial of service (DoS) attacks on IEEE 802.11 networks, and how to properly secure wireless LANs using the IEEE 802.11i standard.

Students are encouraged to bring their laptop computers to class in order to participate in the exercises.

Learning Objectives

Outline

Upon completing the course the student will be able to:

•Understand security policies and mechanisms and their different types.

•Understand the basic concept of operation of cryptosystems (i.e. SPNs, confusion and diffusion).

•Understand the key generation functionalities and attacks against key exchange protocols.

•Describe the basic operation of IPSEC, firewalls, and VPNs.

•Understand the different types of malicious logic and their basic concept of operation.

•Describe the different types of threats, the phases of a cyber attack, and defense techniques against each phase.

•Describe the security failures within the IEEE 802.11 protocol and how to properly secure WLANs using the IEEE 802.11i standard.

Target Audience

Professionals such as engineers, product developers, managers, security officers, city/state government or law enforcement professional, and network administrators who have a special interest in quickly getting up to speed with computer and telecommunication security concepts.

Day One		Malicious Logic	
Introduction		• Viruses, trojan horses, bac-	teria, logic bombs
• Basic components of com-	• Risk analysis	Day Three	
puter security	 Design principles of security 	Telecom Security	
 Threats 	policies	 Firewalls, VPN, IPSEC 	
Access Control		Phases of a Cyber Attack	
• Access control mechanisms,	 Role-based access control 	 Attack preparation 	• Man-in-the-middle attacks
lists, and capabilities	 Attribute-base access con- 	 Target scanning 	 Denial of service attacks
 Mandatory access control 	trol	 Buffer overflow 	 Backdoors
• Discretionary access control		 Integer overflow 	 Botnets
Security Policies		 SQL injection 	 Covering tracks and flux
 Confidentiality policies 	 Hybrid policies 	 Cross-site scripting 	networks
 Integrity policies 		Defense Techniques	
Day Two		• Vulnerability scanning and	
Cryptosystems		network mapping	
Basic cryptography and	 Cryptanalysis 	 Firewall settings 	
ciphers techniques	• PKI	 Patching 	
• DES	 Hashing 	• IDS	
• AES	• Cryptographic checksums		
 Blowfish 	 Key management 		
• RC4	, ,		
Authentication Mechanisms			
 Password-based 	• One-time passwords		

Token-based

Une-time passwords

Dr. Chris Baker is the Ohio State Research Scholar in Integrated Sensor Systems at The Ohio State University. Until June 2011 he was the Dean and Director of the College of Engineering and Computer Science at the Australian National University (ANU). Prior to this he held the Thales-Royal Academy of Engineering Chair

of intelligent radar systems based at University College London. He has been actively engaged in radar systems research since 1984 and is the author of over two hundred and fifty publications. His research interests include, Coherent radar techniques, radar signal processing, radar signal interpretation, Electronically scanned radar systems, Radar imaging, natural and cognitive echo locating systems. He is the recipient of the IEE Mountbatten premium (twice), the IEE Institute premium and is a Fellow of the IET. He is a visiting Professor at the University of Cape Town, Cranfield University, University College London, Wright State University, Nanyang Technical University and Strathclyde University.

Public Course:

• Modern Radar Systems: Nov 16-Nov 20, 2015 San Jose, CA

Les Besser

In 1985 Les Besser formed Besser Associates, an organization dedicated to continuing education. He retired and sold Besser Associates in 2004.A native of Hungary, Les Besser began his engineering career in 1966 in Hewlett Packard's Microwave Division, developing broadband mi-

crowave components, receiving a patent for the first thin-film amplifier circuitry used in the CATV industry. Next, he concentrated on MICs, GaAs FET Amplifiers, and CATV systems at the Microwave and Optolectronics Group of Fairchild. During this time he became interested in CAD and wrote the SPEEDY program that offered a transistor database with high-frequency device parameters. He later joined Farinon Electric Company to direct their microcircuit design and development effort. During that period he authored COMPACT, the first commercially successful microwave circuit optimization routine, soon to become the industry standard. He then founded Compact Software, a pioneer CAD software company (now part of Ansoft), and was active in serving the engineering design needs of the RF/ Microwave industry during the next ten years. In 1980, his company merged with Communication Satellite Corporation (COMSAT) where Dr. Besser functioned as a Senior Vice President. He was instrumental in the formation of the RF EXPO Short Course program between 1986 and 1991. From 1988 to 1990 he also served as Editorial Director of Microwave Systems News (MSN) magazine.

Dr. Besser has published over 70 technical articles, developed three one-week short courses, contributed to and co-authored several textbooks, including the two-volume, Practical RF Circuit Design for Modern Wireless Systems, which is also available in Chinese language. He has been involved in numerous IEEE activities. A Life Fellow of the IEEE, in 1983 he received the IEEE MTT "Microwave Applications Award," the IEEE RFTG "Career Award" in 1987, the IEEE "Third Centennial Medal" in 2000, the IEEE Educational Activities Board's "Meritorious Achievement Award in Continuing Education" in 2006 and the IEEE MTT "Distinguished Educator" award in 2007. He is also listed in Marquis' "Who Is Who In The World," and in Microwave Hall of Fame.

Steven Best

Steven R. Best is a Senior Principal Sensor Systems Engineer with the MITRE Corporation in Bedford, MA. He received the B.Sc.Eng and the Ph.D. degrees in Electrical Engineering in 1983 and 1988, respectively, from the University of New Brunswick in Canada. Dr. Best has over 28 years of experience in business management

and antenna design engineering in both military and commercial markets. Prior to joining MITRE, Dr. Best was with the Air Force Research Laboratory (AFRL) at Hanscom AFB, where his research interests included electrically small antennas, wideband radiating elements, conformal antennas, antenna arrays and communications antennas. Prior to joining AFRL, he was President of Cushcraft Corporation in Manchester, NH from 1997 to 2002. He was Director of Engineering at Cushcraft from 1996 to 1997. Prior to joining Cushcraft, he was co-founder and Vice President and General Manager of Parisi Antenna Systems from 1993 through 1996. He was Vice President and General Manager of D&M/Chu Technology, Inc. (formerly Chu Associates) from 1990 - 1993. He joined Chu Associates as a Senior Electrical Engineer in 1987.

Dr. Best is the author or co-author of 3 book chapters and over 100 papers in various journal, conference and industry publications. He frequently presents a three-day short course for the wireless industry titled *Antennas and Propagation for Wireless Communication*, he is the author of a CD-ROM series on antenna theory and design, and he has presented several Webinars on antenna topics. He has also authored an IEEE Expert Now module on electrically small antennas. Dr. Best is a former Distinguished Lecturer for IEEE Antennas and Propagation Society (AP-S), a former member of the AP-S AdCom, a former Associate Editor for the IEEE Transactions on Antennas and Propagation, and Senior Past Chair of the IEEE Boston Section. He is also a former Editor-in-Chief for AP-S Electronic Communications. Dr Best is a Fellow of the IEEE and a Past-President of the IEEE Antennas and Propagation Society.

Public Course:

• Antennas & Propagation for Wireless Communications: Oct 12-Oct 15, 2015 San Jose, CA

Joe Boccuzzi

Joseph Boccuzzi, Ph.D.

Dr. Boccuzzi is currently Director of System Architectures at Mindspeed Technologies involved with 4G systems. Previously he was a Principal Scientist for Broadcom Corporation designing wireless communication systems. His responsibilities cover the mobile station (MS, UE) and base station (BTS, NodeB) with emphasis on EDGE, WCDMA, HSDPA/HSUPA & their evolution, as well as LTE (i.e. Turbo 3G) radio access technologies. He worked on the WCDMA evolution path such as supporting VoIP, MBMS, MIMO, Femto Cells, etc.

He developed multimode reconfigurable receiver architectures supporting spread spectrum (WCDMA, IS-95, CDMA2000, WLAN and GPS); worked on Adaptive Antenna Array (Smart Antenna) algorithms for WCDMA, TDMA and OFDMA systems. He also investigated SISO, SIMO, MISO and MIMO antenna configurations.

He has designed complete uplink and downlink digital communication system simulations for both Wireless and Wireline technologies including: Modems, Codecs, RF Impairments, Channel models, etc. These simulations supported both the link and network levels and involved mathematical analysis. The algorithms included: high speed cable modems, power line communications, satellite systems, Flex paging systems, CT-2, DECT, JDC, IS-136, GSM, DVB-H, WiMax, WLL, Bluetooth, etc.

An author of technical papers, prepared technology presentations worldwide and holds over 20 patents, domestic and international. He is the author of Signal Processing for Wireless Communications, published by McGraw Hill.

Scott Bullock

Scott R. Bullock received his BSEE degree from Brigham Young University in 1979 and his MSEE degree from the University of Utah in 1988. Mr. Bullock worked in research and development for most of his career developing a radar simulator, a spread spectrum microscan receiver, a new spread spectrum receiver where he applied for a

patent and was awarded company funds as a new idea project to develop the concept..

Mr. Bullock also developed a spread spectrum environment simulator for a spread spectrum wideband countermeasures receiver using BPSK, QPSK, SQPSK, MSK, frequency hopper, hybrids, AM, FM, voice generator, jammers, and noise. He also designed a high-frequency adaptive filter used to reduce narrowband jammers in a wideband signal; a broadband, highly accurate frequency hop detector; an instantaneous Fourier transform (IFT) receiver; a chopper modulated receiver; a KUband radio design for burst spread spectrum communications through a troposcatter channel; a Gram-Schmidt orthogonalizer to reduce jammers; an advanced tactical data link; RF analysis of an optical receiver study; a portable wideband communications detector; and an acoustic-optic spectrum analyzer photodiode array controller.

Mr. Bullock developed the first handheld PCS spread spectrum telephone with Omnipoint in the 902-928 MHz ISM band. He also received a patent for his work on reducing spectral lines to meet the FCC power spectral density requirements. Mr. Bullock was responsible for various types of spread spectrum data links for the SCAT-1 program related to aircraft GPS landing systems. He was an active participant in the RTCA meetings held in Washington, DC, for the evaluation and selection of the D8PSK data link to be used as the standard in all SCAT-1 systems. He also worked on the concepts of the Wide Area Augmentation System (WAAS), low probability of intercept (LPI) data link, DS/FH air traffic control asynchronous system, JTRS, and Link-16.

Mr. Bullock developed several commercial products such as wireless jacks for telephones, PBXs, modems, wireless speakers, and other various wireless data link products. He has performed data link communications work and taught seminars for Texas Instruments, L-3 Com, BAE, Omnipoint, E-Systems, Phonex, L-3 SND, Raytheon, CIA, SAIC, MKS/ENI, Northrop Grumman, and Thales.

Mr. Bullock has held many high-level positions, such as Vice President of Engineering for Phonex Broadband, Vice President of Engineering for L-3 Satellite Network Division, , Senior Director of Engineering for MKS/ENI, Engineering Fellow at Raytheon, and Consulting Engineer for Northrop Grumman. He specializes in wireless data link design and system analysis and directs the design and development of wireless products for both commercial and military customers.

Mr. Bullock holds 18 patents and 22 trade secrets in the areas of spread spectrum wireless data links, adaptive filters, frequency hop detectors, cognitive radios and systems, and wireless telephone and data products. He has published numerous articles dealing with spread spectrum modulation types, multipath, AGCs, PLLs, and adaptive filters. He is the author of two books; Transceiver and System Design for Digital Communications, and Broadband Communications and Home Networking. He is a licensed professional engineer and a member of IEEE and Eta Kappa Nu. He has taught seminars at many different companies for over 10 years. He has taught an advanced communication course at ITT, an engineering course at PIMA Community College, and was a guest lecturer on multiple access systems at PolyTechnic University, Long Island, New York.

Steve Cripps

Dr Steve C. Cripps obtained his Ph.D. degree from Cambridge University, England. He worked for Plessey Research (now GECMM) on GaAsFET hybrid circuit development. Later he joined Watkins-Johnson's solid state division, Palo Alto, CA, and has held Engineering and Management positions at WJ, Loral, and Celeritek.

During this period, he designed the industry's first 2-8 Ghz and 6-18 Ghz 1 watt solid state amplifiers, and in 1983 published a technique for microwave power amplifier design, which has become widely adopted in the industry. In 1990 he became an independent consultant and was active in a variety of commercial RF product developments, including the design of several cellular telephone power amplifier MMIC products. In 1996 he returned to England, where his consulting activities continue to be focused in the RF power amplifier area. He has just published a second edition of his best-selling book, "RF Power Amplifier Design for Wireless Communications" (Artech House). He is currently vice-chair of the High Power Amplifier subcommittee of the Technical Co-ordination and Technical Program Committees of the IEEE Microwave Theory and Techniques Society, and writes the regular "Microwave Bytes" column in the IEEE Microwave Magazine. Dr Cripps is an IEEE fellow and a Professorial research fellow at Cardiff University, UK.

Ali Darwish

Ali Darwish, Ph. D., received his Ph.D. degree from Massachusetts Institute of Technology (MIT), Cambridge, MA, in 1996. In 1990, he joined COMSAT Laboratories where he conducted the experimental work on his M. S. thesis. In 1992, he joined the Optics and Quantum Electronics Group, MIT as a research assistant.

In 1997, he co-founded Amcom Communications Inc., a leading supplier of high power microwave integrated circuits. At Amcom Communications he served as the vice president of product development where he designed and commercialized several product lines. In May 2003 he joined a US government research lab where he conducted research on wide bandgap materials (GaN), thermal analysis of active devices, and novel MMIC concepts.

Dr. Darwish designed several state-of-the-art monolithic microwave integrated circuits (MMICs) including an X-band low phase noise oscillator, GaN mm-wave power amplifiers, SiGe mm-wave amplifiers, broadband high power amplifiers (in the L-, S-, X-, Ku-, and Ka-band), mixers, a DC-40 GHz digital attenuator, phase shifters, and charge pumps. He also built and tested a 1000-Watt linearized amplifier for WCDMA base stations, a high efficiency 200-Watt S-band amplifier, and a Kuband packaged power amplifier MMIC for very small aperture terminal (VSAT) applications.

He has published over 70 technical articles, and has developed a number of short courses on microwave circuit design through Besser Associates Inc.. He is currently conducting research on thermal effects in MMICs, and innovative power amplifier topologies.

Public Course:

• GaN Power Amplifiers: Jun 2-Jun 4, 2015 Web Classroom, WebEx

Public Course:

• RF Power Amplifier Techniques - featuring GaN plus Si & GaAs semiconductors: Sep 28-Oct 2, 2015 San Jose, CA

Eric Drucker

Eric Drucker has almost 33 years of RF/analog circuit design experience, mainly in the area of high performance synthesizer/PLL design. He received his BS from the University of Michigan in 1972 and his MSEE from Stanford University in 1974. He spent 18 plus years at the Fluke Corporation, the majority of the time in the

signal generator group and a few years designing high-speed cable testers for LAN applications. After the signal generator group was dissolved at Fluke in 1991 and sold to Giga-tronics he joined them for a short time and continued to consult for them throughout the 1990's. While still in Seattle, he joined a start-up, Metawave Communications where he designed circuitry for smart antenna systems. He also worked for Datacom Technologies and Motorola for short periods during the 90's.

In 2000 he accepted a position with Agilent Technologies in Santa Rosa, CA in the frequency synthesis advanced development group. He is responsible for forward-looking system and circuit design of high-performance state of the art frequency synthesizers that are used throughout Agilent's product line.

He is also part of an Agilent sponsored collaboration with Sonoma State University to start an electrical engineering program. Here he is currently teaching Electronics I, the first class on active devices and circuits. He also teaches short courses for Besser Associates, Inc. He has 10 patents.

Oren Eliezer

Dr. Oren Eliezer has over 25 years of experience in the design and productization of communication systems and chips for telecom and wireless applications.

He received his BSEE and MSEE degrees from the Tel-Aviv University in 1988 and in 1997, focus-

ing on communication systems and signal processing, and his PhD in microelectronics from the University of Texas at Dallas in 2008.

After serving for 6 years as an engineer in the IDF, he cofounded Butterfly Communications, which was acquired by Texas Instruments (TI) in 1999.

He was relocated by TI to Dallas in 2002, where he was elected senior member of the technical staff, and took part in the development of TI's digital-radio-processor (DRP) technology and in digital-signal processing techniques for built-in compensation and testing in wireless SoCs.

He joined Xtendwave in Dallas in 2009, where he received several government research grants and was responsible for redesigning the US government's atomic-clock broadcast (WWVB).

He has authored and coauthored over 50 journal and conference papers and over 45 patents, and has given over 40 invited tutorials related to communication system design and productization.

He is currently the chief technology officer at Xtendwave and participates in the research at the Texas Analog Center of Excellence (TxACE) at UTD. He is a technical program committee member for the IEEE RFIC conference and has chaired several local IEEE conferences.

Ayman Fayed

Ayman Fayed received his B.Sc. in Electronics & Communications Engineering from Cairo University in 1998, and his M.Sc. and Ph.D. in Electrical & Computer Engineering from The Ohio State University in 2000 and 2004 respectively. From 2000 to 2009, he held several technical positions in the area of analog and mixed-signal

design at Texas Instruments Inc., where he was a key contributor to many product lines for wire-line, wireless, and multi-media devices. From 2000 to 2005, he was with the Connectivity Solutions Dept. at TI, where he worked on the analog frontend design of high-speed wire-line transceivers such as USB 2.0, IEEE1394b, and HDMI. He also worked on the design of fully integrated switching/linear regulators and battery chargers for portable media players. From 2005 to 2009, he was a member of the technical staff with the wireless analog technology center at TI, where he worked on the design of several deltasigma data converters for various wireless standards and the development of fully integrated power management solutions for mixed-signal SoCs with mutli-RF cores in nanometer CMOS. Dr. Fayed joined the Dept. of Electrical & Computer Engineering at Iowa State University in 2009, where he held the Northrop Grumman Assistant Professorship and is currently an associate professor. He is the founder and director of the Power Management Research Lab (PMRL) and his current research interests include on-chip smart power grids for dynamic energy distribution in highly-integrated systems, low-noise wide-band power supply modulators for RF, high-frequency switching regulators with on-chip and on-package passives, energy harvesting for power-restricted and remotely-deployed systems, and power converter design in emerging technologies such as GaN. Dr. Fayed has many publications and patents in the field and has authored a book in the area of adaptive systems entitled Adaptive Techniques for Mixed Signal System On Chip (Springer 2006). He is a senior member of IEEE, an associate editor for IEEE TCAS-II, and serves in the technical program committee of RFIC, ISCAS, and the steering committee of MWSCAS. Dr. Fayed is a recipient of 2013 NSF CAREER Award.

Rick Fornes

Rick Fornes has twenty years of hands-on experience as an RF/Microwave Engineer, Program Manager, Engineering Director and Consultant, with companies such as Nokia, Lucent, Trimble Navigation and Plantronics. Initially his interest was focused on designing low-noise, broadband,

and power amplifiers for military communication systems. Later his interest expanded to complete RF systems for commercial radio products and was involved in the design and development of low-cost

RF circuits and sub-systems for wireless products. He also consults as a Technical Trainer for a number of telecommunication companies. During the past five years he has taught nearly 200 courses worldwide on RF circuit and system design, as well as RF test and measurements for Besser Associates, Inc . He has put together numerous conference papers on RF-related topics, dealing with the design of power amplifiers and low-cost wireless systems. Mr. Fornes is a licensed amateur radio operator. •20 years of innovative RF circuit design, system design and engineering management

•Licensed amateur radio operator since 1971

•Member of IEEE, Eta Kappa Nu, The EE Honor Society and ARRL

- •Patents pending (advanced RF system architectures)
- •Member of Who's Who National Register's (2002-2003)
- •Member of Technical Advisory Board for Besser Associates

•BSEE, advanced studies in microwave circuits, system engineering and business management

Rex Frobenius

Rex Frobenius has been working at Besser Associates for over 19 years, where he is VP of Engineering and co-owner. To date he has presented nearly one hundred courses to over one thousand students in the United States, Europe, and Asia. His main focus has been course development for linear RF circuit design and test and

measurement courses, with his latest project having been the online RF Technology Certification program. He has been the co-author of several articles and has co-authored the recently published text "*RF Measurements for Cellular Phones and Wireless Data Systems*" with Al Scott. Working for Besser Associates has given Rex the unique opportunity to be mentored by many of the industry's leading engineers including company founder Les Besser. He received his BSEE from UC Davis and also has a BA in Rhetoric from UC Berkeley, which makes him uniquely qualified to develop and present materials for training in the RF industry. Rex has developed several Java-based RF-related utility applets which are featured in Besser training courses and available for free on the Bessernet.com website.

Public Course:

• RF Technology Certification: Feb 20-Aug 28, 2015 Web Classroom, WebEx

Public Course:

• RF Technology Certification: Jun 22-Nov 23, 2015 Web Classroom, WebEx

Bob Froelich

Dr. Bob Froelich is an RF and Microwave Engineer with 30 years of experience in design of circuits and systems for radar, radio astronomy and wireless communications, the latter including GPS, Bluetooth and proprietary systems. He has worked with Watkins-Johnson, Trimble Navigation, CellNet Data Systems, M/A-COM,

and Cobham Defense Systems.

Bob received his BS in Electrical Engineering, Summa Cum Laude, from the University of Michigan. He remained there to complete a Ph.D. in Electrical Engineering in 1982, studying aspects of semiconductor physics as applied to IMPATT diodes. He has written a number of technical articles on device modeling and microwave measurement techniques. He currently teaches web-based classes and short courses for Besser Associates, Inc.

Public Course:

• RF Design: Core Concepts: Aug 24-Aug 28, 2015 Web Classroom, WebEx

Public Course:

• RF Design: Applied Techniques: Sep 14-Sep 18, 2015 San Jose, CA

Sean Gallagher

Sean received his Masters in Computer Engineering from Villanova University and has a total of 19 years experience building algorithms in FPGAs. This experience includes 10 years as a senior staff DSP Specialist for Xilinx Inc., and currently as an independent consultant doing business as Hardware DSP Solutions Inc. Sean taught an introduction to DSP class as adjunct professor at Temple University for 3 years and has been an adjunct professor for 7 years at Villanova University where he currently teaches a graduate course in Hardware DSP. He teaches the course *Hardware DSP - A guide to building DSP Circuits in FPGAs* for Besser Associates, Inc.

Rowan Gilmore

Rowan Gilmore received his undergraduate education at the University of Queensland, Brisbane, Australia, where he was awarded the University Medal and the B.E. degree in Electrical Engineering (Hons) in 1976, and his graduate education at Washington University in St. Louis where he was awarded the D. Sc. Degree

in 1984. His research area was in the modeling of nonlinear behaviour in microwave MESFET circuits, as a result of which he was a pioneer in applying harmonic balance analysis to RF and microwave circuit design. Subsequently, while Vice President of Engineering with Compact Software, Dr. Gilmore led the introduction of Microwave Harmonica, the world's first commercial simulator applicable to the nonlinear design of microwave and RF circuits.

Dr. Gilmore gained his design experience over a number of years at Schlumberger, where he developed an RF tool for measurement of oil wells, and at Central Microwave, where he designed and developed numerous linear microwave power amplifiers, as well as oscillators and switching components. Subsequently, while at Compact Software, he was responsible for the development of their entire software suite of computer aided design tools. He was later Vice President at SITA-Equant, operator of the world's most extensive data network, where he worked with a number of airlines and multinationals on their data telecommunications and IT needs. He spent eight years as the Chief Executive Officer of the Australian Institute for Commercialisation, located in Brisbane, Australia, working on establishing liaisons and facilitating technology transfer between universities and industry. He holds an appointment as Adjunct Professor of Electrical Engineering at the University of Queensland. He is currently a Director of EMSolutions, a specialist designer and producer of Ka-band microwave components and satellite systems, and Chairman of EMClarity, a producer of terrestrial point-to-point microwave communication systems.Dr. Gilmore is a Chartered Engineer and Senior Member of the IEEE. He has published more than thirty articles in the field of microwave systems and circuit design, and has served on the editorial boards of the IEEE Transactions on Microwave Theory and Techniques, and of Wiley's International Journal of RF and Microwave Computer-Aided Engineering. He has been active in the education of graduate engineers in industry, having taught courses around the world to nearly fifteen hundred practicing RF and microwave engineers for the over a decade. With Dr. Besser, he is co-author of the widely read two-volume textbook 'Practical RF Circuit Design for Modern Wireless Systems'.

Irving Kalet

Irving Kalet

PhD, Tel Hai College, Haifa, Israel, and Columbia University, New York, USA.

Dr Kalet has been teaching and working in the area of digital communications in both Israel and the United States for more than 30 years.

While in Israel, he teaches at the Technion in Haifa. He is also currently an Adjunct Professor in the Department of Electrical Engineering in Columbiua University in New York. He has worked in the area of mobile wireless communications and digital transmission over the twisted-pair cable (HDSL, ADSL, and the 56 Kbps modem) at Bell Laboratories and in the area of satellite communications at MIT Lincoln Laboratories.

Dr Kalet has published many papers in the area of digital communications and is the author of the chapter on Multitone Modulation in Sublet and Wavelet Transforms - Design and Applications, Kluwer Academic Publishers-1995. He is presently working in the areas of digital modulation techniques and multiple access techniques for wireline and wireless communication systems.

Waleed Khalil

Waleed Khalil, PhDWaleed Khalil is currently serving as an Associate Professor at the ECE department and the ElectroScience Lab, The Ohio State University. He received his B.S.E.E. and M.S.E.E degrees from the University of Minnesota in 1992 and 1993, respectively, and his PhD degree from Arizona State University in 2008.

He is a founder of CLASS (Circuit Laboratory for Advanced Sensors and Systems) at OSU where he conducts research in digital intensive RF and mm-wave circuits and systems, high performance clocking circuits, GHz A/D and D/A circuits. Prior to joining OSU, Dr. Khalil spent 16 years at Intel Corporation where he held various technical and leadership positions in wireless and wireline communication groups. While at Intel, he was appointed the lead engineer at the advanced wireless communications group, where he played an instrumental role in the development of the industry's first Analog Front-end IC for third generation radios (3G). He established Intel's first analog device modeling methodology for mixed signal circuit design and also contributed to the development of Intel's first RF process technology. He later co-founded a startup group to develop Intel's first RF front-end IC, as a principle leader of the radio transmitter chain. In 2010, he was awarded TSMC's outstanding research award in the area of circuit design technologies. He authored and co-authored 11 issued and several other pending patents, over 60 journal and conference papers and three book/book chapters. He is a senior member in IEEE and serves in the steering committee for the RFIC Symposium and technical program committee for the Compound Semiconductor IC Symposium. He also teaches web-based classes and short courses for Besser Associates, Inc.

Public Course:

• The Radio Modem: RF Transceiver From Antenna to Bits and Back: Sep 28-Oct 2, 2015 San Jose, CA

Lutz Konstroffer

Dr Konstroffer is a technical consultant with focus on short-range wireless applications. He started his career in the field of fiber optics, where he did theoretical and experimental investigations in wavelength division multiplexing and optical heterodyning. As a head of a working group in the research and develop-

ment department of the Kathrein-Werke Rosenheim, his area of responsibility included the design of an optical heterodyne transmission system, the development of hardware and software for optical and electrical

measurements, the design and engineering of laser diode modules as well as the design of optical transmitters and receivers up to 2 GHz. In 1996, he joined Texas Instruments were he set up the company's European RF application lab. He was responsible for customer support of RF products in Europe, designed evaluation boards for cordless and ISM applications and held in-house seminars. Dr. Konstroffer is an author of several technical publications. Since

2000, he works as an independent consultant and managing director of RF Consult GmbH.

Jeff Lange

Jeff Lange, President of Besser Associates, has over 20 years of experience in RF/Wireless design, manufacturing, and management. He has been responsible for the design and development of numerous RF, Microwave, and Navigation components and systems for companies such as Trimble Navigation, Sony, and Watkins-Johnson. He has spent a considerable portion of his career involved with GPS based navigation systems for military and commercial applications, including in-vehicle telematics. In addition, he served in a variety of leadership positions spanning portable wireless systems development, IC engineering, program management, and operations management. Mr. Lange received a BSEE from Cal Poly, San Luis Obispo, and an MBA from Santa Clara University. He is a member of Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi honor societies..

Richard Lyons

Richard G. Lyons

Richard Lyons has been the Lead Hardware Engineer for numerous multi-million dollar signal processing systems for both the National Security Agency (NSA) and TRW (now Northrop Grumman). An experienced lecturer and instructor at the University of California Santa Cruz

Extension, he has delivered signal processing seminars and training courses for Besser Associates throughout the US and Europe to companies such as Motorola, Lockheed-Martin, Texas Instruments, Nokia, Honeywell, Qualcomm, National Semiconductor, Northrop Grumman, Sandia National Laboratories, Wright-Patterson Air Force Base, etc. He has written numerous articles on DSP topics, and authored the top selling DSP book Understanding Digital Signal Processing, now in its third edition. Lyons is the primary contributor to, and Editor of, the book Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook. He is an Associate Editor of the IEEE Signal Processing magazine, where he created and edits the "DSP Tips & Tricks" column; and a member of Eta Kappa Nu, the electrical engineering honor society. He received the 2007 IEEE Signal Processing Magazine Best Column Award and the IEEE Signal Processing Society's 2012 Education Award

Public Course:

• DSP - Understanding Digital Signal Processing: Oct 19-Oct 21, 2015 San Jose, CA

Earl McCune Jr.

Dr. McCune has over 35 years of experience in wireless communication technology, systems, and circuit design. He has learned across this career that a thorough understanding of physical fundamentals is essential to avoid making huge mistakes, providing an extremely useful check on mathematical derivations and com-

puter simulations (not to mention young engineers!).

Earl holds over 40 US patents, and is frequently an invited speaker at conferences worldwide. He is a graduate of UC Berkeley, Stanford, and UC Davis. He has been a Silicon Valley entrepreneur since 1986, starting up two groundbreaking technology companies that both provided successful exits to the investors. His work experience includes NASA, Hewlett-Packard, Watkins-Johnson, Cushman Electronics, Digital RF Solutions (start-up #1), Proxim, Tropian (start-up #2), and Panasonic. He is now a semi-retired consultant, instructor for Besser Associates, and visiting professor at multiple universities.

Arturo Mediano

Arturo Mediano received both his M.Sc. (1990) and his Ph. D. (1997) in Electrical Engineering from the University of Zaragoza, Spain. He has been involved in design and management responsibilities for R&D projects with companies in the radiofrequency (RF) and EMI/EMC fields for communications, industry and scientific/

medical applications since 1990.

Since 1992 he has held a teaching professorship with special interest in Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC) and RF (HF/VHF/UHF) design for Telecom and Electrical Engineers.

His research interest is high efficiency switching mode RF power amplifiers with experience in applications like mobile communication radios, broadcasting, through-earth communication systems (TTE), induction heating, medical equipment, plasmas for industrial applications and RFID.

He has substantial experience in collaboration with industries with a focus on training and consulting in RF design and EMI/ EMC design and troubleshooting.

He has taught more than 40 courses and seminars for industries and institutions in the fields of RF/EMI/EMC in Spain, USA, Switzerland, France, UK, Italy and The Netherlands. He has been involved in approximately 50 R&D projects for companies and/or institutions in the fields of EMI/EMC/RF (in more than 40 projects as Main Researcher). Usually the result was directly used in a marketed product.

Dr. Mediano is author/co-author for around 50 publications and 8 patents as result of activity in research activities listed before.

He has been a speaker in paper sessions and tutorials of some of the most important symposiums and conferences related to RF and EMC (RF EXPO, IEEE IMS, and IEEE Intl. Symp. EMC, URSI, EPE, ARFTG, EUROEM, IEEE RWS, EuMW, etc).

He is a Senior Member of the IEEE, where he has been an active member since 1999 (Chair since Jan 2013) of the MTT-17 (HF/VHF/UHF technology) Technical Committee of the Microwave Theory and Techniques Society and member of the Electromagnetic Compatibility Society (member of the directive of the EMC Spanish Chapter).

Arturo shares free time between his family, fly fishing, and drawing cartoons.

Public Course:

• EMI/EMC and Signal Integrity Boot Camp: Nov 2-Nov 6, 2015 San Jose, CA

Steve Moore

Steve Moore has over twenty-five years experience working for many of the industries top RF/ Wireless companies. He has a BSEE degree from UC Berkeley, an MSEE degree from Santa Clara University and has worked his entire career in the Silicon Valley area for both large companies

and small startups. After many years as a design engineer working on microwave circuits (and subsystems) for Watkins-Johnson Company he transitioned to the commercial wireless industry and was an engineering manager for Wireless Access developing 2-way pagers and then an applications manger for SiRF Technology supporting customers working on GPS products. After that he worked for a Bluetooth startup company and then took over the Product Line Management role for WiFi products at Symbol Technologies. Most recently he was the VP of Sales and Applications for Micro Linear Corporation selling/ supporting consumer wireless ICs for radio applications such as audio, video, and control. Steve has spent nearly his whole career managing, teaching, training, and supporting RF/wireless design engineers and now spends his time teaching and consulting.

Douglas H. Morais

Douglas H. Morais

Doug Morais has over 40 years of experience in wireless design and management. Before starting Adroit Wireless Strategies, a wireless consulting and training company, he held executive management positions at Harris Corporation, Digital Microwave Corporation, California Micro-

wave Inc., and Ortel Corporation. At Harris, he held microwave radio design and engineering management positions for 11 years. He has authored several papers on digital microwave communications and the book Fixed Broadband Wireless Communications. He holds a U.S. patent that addresses point-tomultipoint microwave radio communications. He has a Ph.D in Electrical Engineering, is a senior and life member of the IEEE, and a member of the IEEE Communications Society.

Ed Niehenke

EDWARD C. NIEHENKE, Ph.D., PE, Lecturer & President of Niehenke Consulting

Dr. Niehenke has pioneered the development of state-of-the-art RF, microwave, and millimeter wave components at Westinghouse/ Northrop Grumman. Circuits include low noise

amplifiers, low noise oscillators, mixers, frequency multipliers, power amplifiers, phase shifters, limiters, low-noise fiber optical links, and miniature integrated assemblies and subsystems. He previously worked in cryogenic electronics research at Martin-Marietta. Since 1983 he has been actively teaching linear, nonlinear, power amplifier, and transceiver circuit design for wireless communications to over 3000 professionals throughout the world for Besser Associates and the Continuing Education of Europe. He has given over 120 presentations at symposia, workshops, IEEE chapter/section meetings, and keynote addresses at conferences. He holds nine patents, one George Westinghouse Innovation Award, and has authored over 30 papers on RF, microwave, and millimeter wave circuits. Dr. Niehenke is a member of Microwave and Millimeter Wave Integrated Circuits, Microwave Systems, and Wireless Communications MTT-S Technical Committees and is a fellow of the IEEE.

Istvan Novak

Dr. Istvan Novak, Distinguished Engineer, Signal and Power Integrity, SUN Microsystems, Inc., Boston, MA

In the past eleven years Dr. Novak was responsible for the power distribution and high-speed signal integrity designs of SUN's successful

V880, V480, V890, V490, V440, T1000, T2000, T5120 and T5220 midrange server families. He introduced the industry's first 1-mil laminates into volume-produced

server PCBs, and drove the multi-company development of controlled-ESR and low-inductance bypass

capacitors. He was SUN's representative on the InfiniBand Cable and Connector Workgroup. He is

engaged in the methodologies, designs and characterization of power-distribution networks.

Dr.Novak has thirty years of experience with high-speed digital, RF, and analog circuit and system

design and has twenty five patents. He is Fellow of IEEE for his contributions to the signal-integrity

and RF measurements as well as simulation methodologies, lead-author of the book "Frequency-Domain Characterization of Power Distribution Networks" (Artech House, 2007) and Executive Editor of the book "Power Distribution Design Methodologies" (IEC, 2008).

Previously Dr. Novák advised the European Laboratory for Particle Physics (CERN) on signal-integrity

and EMC issues for Fibre Channel data-collection systems of the Large Hadron Collider. He worked and

consulted for several companies in the computer and telecommunications industry, to do clock- and

power-distribution networks, switching-mode power converters as well as high-speed backplanes, and

copper and optical interconnects in the GB/s range.

Dr. Novak had his technical education from the Technical University of Budapest, and his Ph.D.

degree from the Hungarian Academy of Sciences. He organized and led the High Speed Technology

Team at the Technical University of Budapest, where his teaching activity covered transmission

lines and wave propagation, communications systems, EMC and signal-integrity issues of high-speed designs.

Allen Podell

Allen Podell, an IEEE Life Fellow, has designed monolithic and discrete circuits on gallium arsenide, silicon, sapphire, and plastic. With a solid foundation in device-circuit interaction, he specializes in the practical realization of modern circuit techniques. An author of over 70

technical papers, he founded three companies (Anzac Electronics, Podell Associates, and Pacific Monolithics) and he holds 60 US patents ranging from IMPATT diodes, silicon power transistors, and 3-decade bandwidth microwave components, stereo demodulators, antennas, gallium arsenide integrated circuits - and more recently, high power, wideband components. Previously, as VP of Technology at Besser Associates and later at Podell Consulting, he has taught advanced wireless design courses and provided consulting services worldwide.

Public Course:

• EMC/Shielding/Grounding Techniques for Chip & PCB Layout: Jun 22-Jun 26, 2015 Web Classroom, WebEx

Chris Potter

Dr. C. M. Potter

Chris Potter is presently a consultant with Cambridge RF Ltd. in Cambridge UK, working on diverse projects for clients in the fields of GPS receivers, Bluetooth testers, Envelope Tracking PAs, Security tag readers, Microwave radios, and

DVB over fibre. Previously, he has designed a variety of microwave and RF test equipment at Marconi Instruments, worked at Tality UK on RF architectures and product designs for GSM, EDGE, Bluetooth, 802.11a/b and W-CDMA. His main research interests are in the field of adaptive linearization of PAs. He is also active in RF system designs, and tools for automation of the RF design process. Chris Potter received his Ph.D. degree in 1987 from the University of London, England.

Richard Ranson

Dr. Ranson is the founder and Engineering Director of Radio System Design a bespoke design and consultancy service specialising in microwave communications technology. He received his Ph.D. degree from the University of Leeds and has been in industry, actively involved in research and development of microwave compo-

nents and systems for over 25 years. He has been interested in radio from an early age. He obtained a Class A amateur radio license at the age of 14 and has been building and studying radios ever since. At university he specialised in microwave engineering obtaining a PhD on the now not so common topic of Transferred Electron Devices Amplifiers.

His early work was on military systems, designing IFM and band translators for ECM equipment at MEL, then a part of Philips Electronics. He moved to the USA where he worked for AIL and Watkins Johnson Co. As well as various converter and customer specific products Dr. Ranson became a project leader on three major microwave receiver developments. One was the first upconverting, broadband microwave ELINT receiver employing an approximately 22 GHz first IF. The second was an innovative microwave impulse receiver where he was responsible for the key filter designs and the last was a very high dynamic range, triple conversion microwave to baseband processor.

In 1996 Dr. Ranson returned to the UK as Subsystems Engineering Director for Filtronic Comtek. There he grew the development team and expanded the company business and capabilities in integrated front end products. Prior to the most recent position Dr. Ranson was Director of Wireless Research working with a team focused on high efficiency power amplifiers for W-CDMA base stations. This has produced innovative designs for single and multi-carrier linear power amplifiers, employing large Filtronic GaAs pHEMTs and achieving state-ofthe-art power added efficiencies. Until recently he was the Engineering Director of the Integrated Products Group of Filtronic plc responsible for engineering across the four business units in the group. This broad technology base ranged from semiconductor device and MMIC development, through integrated assemblies for point to point radios to advanced radar and ECM sub-systems.

Dr. Ranson is a Fellow of both the IEE now IET and the IEEE. He is a visiting Professor at Leeds University and has published technical articles, organized and presented in MTT workshops and presented numerous internal presentations and international seminars. He was the Digest Editor for the 1996 MTT Symposium in San Francisco, where he helped pioneer the publication on CD-ROM. He is a member of the MTT-S 2007 Technical Program Committee, the past Chairman of the MTT Technical Coordination Committee 20 on Wireless Communica-

tions. In 2006 he was the Technical Program Committee Chairman for European Microwave Week and the General Chair of the ECWT. He is also a member of the Board of Directors for the European Microwave Association and a member of the Steering Committee for the European Conference on Wireless Technology. (EuWit) and an Invited Editor for the Special Issue of the MTT Microwaves Letters focussed on European wireless communications technology.

Public Course:

• Advanced Radio System Architectures: Oct 12-Oct 14, 2015 San Jose, CA

Tamer Refaei

Tamer Refaei received his PhD in Computer Engineering from Virginia Tech in 2007, and B.Sc. in Computer Science from the University of Maryland in 2000. He has been with MITRE Corporation since 2008 as a Senior Engineer/ Scientist. His prior experience includes serving as a research consultant to NIST (National Insti-

tute of Standards and Technologies), and as an Intern at Fujitsu Labs of America. He has been teaching computer security and wireless networking related courses for the past 6 years at Johns Hopkins University, George Washington University, and Virginia Tech. He has a number of publications related to wireless networks and security in MANETs. He has received a number of technical awards from MITRE and a fellowship from NSF.

Keith Schaub

Keith Schaub Founder of Wireless SOC Test Inc, author of the book, Production testing of RF and SOC devices for Wireless Communications, has over 14 years of experience in RF/microwave system design and test engineering. Additionally, he has authored/co-authored several papers and editorials on the state of RF/wireless

SOC/SIP testing and the trends of the market including: "MIMO challenges existing ATE", Test & Measurement World, "Reducing EVM Test Time and Indentifying Failure Mechanisms", Evaluation Engineering, "Evolutionary Changes For RF Device Testing", Evaluation Engineering; "Needed: New Thinking For Wireless/RF Testing", Test and Measurement World, and "Concurrent-Parallel Testing of Bluetooth/802.11x Chip Sets."

Bernard Sklar

Bernard Sklar

With over 40 years experience at companies such as Hughes Aircraft, Litton Industries, and The Aerospace Corporation, Bernard Sklar's credits include the MILSTAR satellite system and EHF Satellite Data Link Standards. He has taught worldwide, and at major universities

such as UCLA and USC. He has authored many technical papers and the book Digital Communications (Prentice-Hall, 1988). He received the IEEE Prize Paper Award in 1984 for his tutorials on digital communications.

Malcolm Smith

Malcolm H. Smith is an independent consultant in the field of RF systems, RFIC, analog, and mixed-signal circuit and system design. He has over 25 years of experience in the semiconductor field and over 18 years of those have been in designing chips for cellular handset applications. He was previously a Senior Manager at

RFMD, which he joined with the acquisition of Amalfi Semiconductor. At Amalfi and RFMD he lead a team designing the World's highest performing Band I 3G PA. While at Amalfi he invented the method used in the latest generation of GSM/ GPRS Tx Modules where the switching function is moved onto the CMOS die. He also invented the output stage architecture used on all Amalfi PAs. Before joining Amalfi Semiconductor he was at Intel where he designed the architecture used in an EDGE transceiver chip which made the first phone call on a public telephone network using an Intel RF chip. Before Intel he was at Bell Labs where he was a circuit designer working on chips used in cellphones and pagers. Dr. Smith started his industrial experience in the UK at STC semiconductors and also worked at Matsushita Electric Works (Panasonic) in Osaka, Japan where he designed analog sensor chips. Dr Smith has a B.Sc. (Hons) Degree from the University of Edinburgh, an M.Sc. Degree from the University of Westminster, and the Ph.D. Degree from the University of Kent. He has over 40 patents granted with several pending. Dr. Smith is a Senior Member of the IEEE and a Member of the IET.

Public Course:

• Design of CMOS Power Amplifiers: Oct 5-Oct 9, 2015 Web Classroom, WebEx

Dan Swanson

Daniel G. Swanson, Jr.Distinguished Fellow of Technology Tyco Electronics (M/A-COM), Lowell, MA, USA.

Dan received his BSEE degree from the University of Illinois and his MSEE degree from the University of Michigan. He started his career at

Narda Microwave West, where he developed broadband amplifiers and a de-embedding system for S-parameter device characterization. At the Wiltron Company he designed YIG tuned oscillators for use in microwave sweepers. He also developed a broad-band load-pull system for optimization of output power. At Avantek Inc. he developed thin-film microwave filters, software for filter design, and a low-frequency, broad-band GaAs MMIC amplifier. In 1989, he joined Watkins-Johnson Company as a Staff Scientist. His work there included thin-film filter design for broadband surveillance receivers, high performance filters for wireless base stations, and the application of electromagnetic field solvers to microwave component design. Mr. Swanson joined AMP M/ACOM in 1997 where he was a Senior Principal Engineer. As a member of the Central R&D group, he applied electromagnetic field-solvers to the design of multilayer PC boards, RF and digital connectors, couplers and other microwave components. Mr. Swanson joined Bartley R.F. Systems in 1999. He designed high Q filters for wireless base stations and developed novel design methods based on EM simulation. Mr. Swanson returned to Tyco Electronics (M/A-COM) in 2003 as a Distinguished Fellow of Technology. As a member of the Strategic R&D group he supports filter and antenna design efforts and consults on EM simulation issues in general.

Mr. Swanson is a Fellow of the IEEE. He is past chairman of the MTT-8 Filters and Passive Components Technical Committee. He is on the editorial board for the IEEE MTT-S Transactions, IEEE MTT-S Microwave and Wireless Components Letters, and the Int. Journal of Microwave and Millimeter-Wave Computer-Aided Engineering and Microwave Journal. Mr. Swanson is the primary author of Microwave Circuit Modeling Using Electromagnetic Field Simulation, published by Artech House. He has published numerous technical papers, given many workshop and short course presentations, and holds two patents.

600

Tim Wescott has over 20 years proven expertise in control systems analysis and design, general embedded system software and hardware design, and teaching on topics related to implementing control systems and sampled-time data

systems.

Mr. Wescott founded and runs Wescott Design Services, where he has worked on projects such as motion control systems for therapeutic exercise equipment, down-hole oil well communications, accurate control of diesel engine speeds in generator sets, detection algorithms to localize cell phones in enhanced 911 networks, and Kalman filters for sensor fusion in high performance vehicle navigation systems.Mr. Wescott wrote the book, Applied Control Theory for Embedded Systems (Elsevier/ Newnes, 2006), which is based on years of experience with making real control systems work in the real world. In this book he combines the necessary theoretical knowledge of control system design with the real-world issues that are often left out of textbooks, to give the reader a balanced and immediately useful combination of theory and practice.Mr. Wescott also contributed a chapter on system design to the book Developing and Managing Embedded Systems and Products: Methods, Techniques, Tools, Processes and Teamwork by Kim Fowler and Craig Silver (Elsevier/Newnes, 2015). Mr. Wescott holds a Master's of Science degree from Worcester Polytechnic Institute, and is a senior member of the IEEE and a member of Eta Kappa Nu.

Public Course:

• Applied Embedded Control Systems: Sep 14-Sep 18, 2015 San Jose, CA

John Wood

John Wood, PhD

John Wood received B.Sc. and Ph.D. degrees in Electrical and Electronic Engineering from the University of Leeds, UK, in 1976 and 1980, respectively. He is currently Senior Principal Member of Technical Staff in Maxim Labs at

Maxim Integrated Products, Inc, Sunnyvale, CA, where he is working on Envelope Tracking and Digital Pre-Distortion systems for wireless communications applications. He was formerly a Distinguished Member of the Technical Staff responsible for RF System & Device Modeling in the RF Division of Freescale Semiconductor, Inc, Tempe, AZ, USA. His areas of expertise include the development of compact device models and behavioural models for RF power transistors and Ics, and linearization and pre-distortion of high-power amplifiers. To enable and support these modeling requirements, he has been involved in the specification of high power pulsed I-V-RF test systems, for connectorized and on-wafer applications, and in the development of large-signal network analyzer (LSNA), loadpull, and envelope measurement techniques. From 1997-2005 he worked in the Microwave Technology Center of Agilent Technologies (then Hewlett Packard) in Santa Rosa, CA, USA, where his research work has included the investigation, characterization, and development of large-signal and biasdependent linear FET models for millimetre-wave applications, and nonlinear behavioural modeling using LSNA measurements and nonlinear system identification techniques.

He has organized, co-organized, and presented at many workshops at IMS and RWS in recent years; he was on the Steering Committee for IMS 2006, and has been a member of the IMS Technical Program Committee for the past four years, currently Chair of SC-20 'High-Power Amplifiers.' He has been a member of the ARFTG Executive Committee from 2007-14, was the Technical Program Chair for the 70th & 75th ARFTG Conferences (2007, 2010), and the General Chair for the 78th ARFTG Conference in Fall 2011. He was Technical Program Chair for the IEEE Power Amplifier Symposium 2008, 2010, and was General Chair in 2009 and 2011. He is a regular reviewer for IEEE Transactions on Microwave Theory & Techniques, on Electron Devices, and on Circuits & Systems. He is author or co-author of over 130 papers and articles in the fields of microwave device and system modeling and characterization, and microwave device technology. He is the co-author of Modeling and Characterization of RF and Microwave Power FETs (Cambridge, 2007), and co-editor of Fundamentals of Nonlinear Behavioral Modeling for RF and Microwave Design (Artech House, 2005). He is Editor-in-Chief of the IEEE Microwave magazine for 2012-14: this is the magazine of the IEEE Microwave Theory & Techniques Society (MTT-S); he is also an MTT-S Distinguished Microwave Lecturer for 2012-14. He received the ARFTG Technology Award in 2007. He is a Fellow of the IEEE.

Amir Zaghloul

Amir I. Zaghloul is with the US Army Research Laboratory on an IPA agreement with Virginia Polytechnic Institute and State University (Virginia Tech), where he has been with the Bradley Department of Electrical and Computer Engineering since 2001. Prior to Virginia Tech, he was at COMSAT Laboratories for 25 years per-

forming and directing R&D efforts on satellite communications and antennas, where he received several research and patent awards, including the Exceptional Patent Award. He held positions at the University of Waterloo, Canada (1968-1978), University of Toronto, Canada (1973-74), Aalborg University, Denmark (1976) and Johns Hopkins University, Maryland (1984-2001). He is a Life Fellow of the IEEE and the recipient of the 1986 Wheeler Prize Award for Best Application Paper in the IEEE Transactions on Antennas and Propagation and the best track paper at the 2004 IEEE Digital Avionics Systems Conference. He is also a Fellow of the Applied Computational Electromagnetics Society (ACES), Associate Fellow of The American Institute of Aeronautics and Astronautics (AIAA), and a Member of Commissions A, B & C of the International Union of Radio Science (URSI). He was the general chair of the 2005 "IEEE International Symposium on Antennas and Propagation and USNC/URSI Meeting," held in Washington, D.C.

He is the author or co-author of more than 220 publications and over 40 patents and invention disclosures in the areas of antennas, RF and microwave systems, sensors, metamaterials, nano-technology, terahertz imaging, and satellite and wireless communication systems. He led successful product developments and patent licensing of consumer electronic equipment based on his patents.

Dr. Zaghloul received the Ph.D. and M.A.Sc. degrees from the University of Waterloo, Canada in 1973 and 1970, respectively, and the B.Sc. degree (Honors) from Cairo University, Egypt in 1965, all in electrical engineering. He also received a MBA degree in Management of Science, Technology and Innovation from the George Washington University, Washington, DC in 1989

